Preview

Bulletin of Siberian Medicine

Advanced search

THE DYNAMICS OF IN VITRO DEGRADATION OF NON-WOVEN POLYLACTIDE MATRICES IN MODEL BIOLOGICAL LIQUID

https://doi.org/10.20538/1682-0363-2013-6-73-81

Abstract

The weekly in vitro degradation of fibrous-porous non-woven polylactide scaffolds made by aerodynamic formation in a turbulent gas flow has been studied with 37 °С in model RPMI-1640 medium imitated body fluid of organism. Lactate monomers released into solution exponentially and reached slowly a maximum value the end of the observation (5th week of dissolution). At the same time, reducing the concentrations of calcium and inorganic phosphorus ions in solutions contacted with tested samples (10×10×1 mm2) testified about chemical elements adsorption on artificial material. Ions exchange with biological fluids may be a basis of regulated bioactivity of fibrous-porous non-woven biodegradable material in application to intercellular matrix bioengineering for regenerative medicine

About the Authors

I. A. Khlusov
Siberian State Medical University, Tomsk; National Research Tomsk Polytechnic University, Tomsk
Russian Federation
Khlusov Igor A. 


K. V. Zaitsev
Tomsk Research Institute of Balneology and Physiotherapy, FMBA of Russia, Tomsk
Russian Federation
Zaitsev Konstantin V.


O. B. Zhukova
Tomsk Research Institute of Balneology and Physiotherapy, FMBA of Russia, Tomsk
Russian Federation
Zhukova Oksana B.


A. A. Gostyukhina
Tomsk Research Institute of Balneology and Physiotherapy, FMBA of Russia, Tomsk
Russian Federation
Gostyukhina Alyena A.


N. G. Abdulkina
Tomsk Research Institute of Balneology and Physiotherapy, FMBA of Russia, Tomsk
Russian Federation
Abdulkina Natalya G.


A. A. Zaitsev
Siberian State Medical University, Tomsk; Tomsk Research Institute of Balneology and Physiotherapy, FMBA of Russia, Tomsk
Russian Federation
Zaitsev Aleksey A.


I. V. Kulagina
Institute of Cardiology, Siberian Branch of the Russian Academy of Medical Sciences, Tomsk
Russian Federation
Kulagina Irina V.


S. I. Tverdokhlebov
National Research Tomsk Polytechnic University, Tomsk
Russian Federation
Tverdokhlebov Sergey I.


E. N. Bolbasov
National Research Tomsk Polytechnic University, Tomsk
Russian Federation
Bolbasov Eugeny N.


K. S. Stankevich
National Research Tomsk Polytechnic University, Tomsk
Russian Federation
Stankevich Xenia S.


References

1. Volova T.G., Sevastiyanov V.I., Shishatskaya E.I. Polyhydroxyalkanoates – biodegradable polymers for medicine: 2nd ed., add. and reprocessing. Krasnoyarsk, Platinum, 2006. 288 p. (in Russian).

2. Biomaterials science: an introduction to materials in medicine. 2 nd ed. Ed. by B.D. Ratner, A.S. Hoffman, F.J. Schoen, J.E. Lemons. San Diego, Elsevier Academic Press, 2004. 851 p.

3. Lee Y.-Sh., Arinzeh T.L. Electrospun Nanofibrous Materials for Neural Tissue Engineering. Polymers, 2011, vol. 3, pp. 413–426.

4. Kola I., Landis J. Can the pharmaceutical industry reduce attrition rates? Nat Rev Drug Discov, 2004, vol. 3, pp. 711– 715.

5. Biocompatible materials. V.I. Sevastiyanov, M.P. Kirpichnikov, eds. Moscow, Medical Information Agency, 2011. 544 p. (in Russian).

6. GOST R ISO 10993-9-2009 Biological evaluation of medical devices. Part 9. The basic principles of identification and quantification of potential degradation products. Moscow, Standartinform, 2010. 11 p. (in Russian).

7. GOST R ISO 10993-13-2009 Biological evaluation of medical devices. Part 13. Identification and quantification of degradation of polymeric medical devices. Moscow, Standartinform, 2010. 17 p. (in Russian).

8. Damien C.J., Ricci J.L., Christel P. et al. Formation of a calcium phosphate-rich layer on absorbable calcium carbonate bone graft substitutes. Calcif. Tissue Int., 1994, vol. 55, pp. 151–158.

9. KokuboT., Kushitani H., Sakka S. et al. Solutions Able to Reproduce in vivo Surface-Structure Changes in Bioactive Glass-Ceramic A–W. J. Biomed. Mater. Res., 1990, vol. 24, no. 6, pp. 721–734.

10. Veresov A.G., Putlyaev V.I., Tretyakov Yu.D. Chemistry of inorganic materials based on calcium phosphates. Russian Chemical Journal, 2004, vol. XLVIII, no. 4, pp. 52–64 (in Russian).

11. GOST R ISO 13781-2011 Resins and molded elements based on poly (L-lactide) for surgical implants. Study of degradation by in vitro method. Moscow, Standartinform, 2011. 12 p. (in Russian).

12. Khlusov I.A., Karlov A.V., Pozhen’ko N.S. et al. A dependence of osteogenic properties of bone marrow cells from a relief and solubility of calcium phosphate coatings. Bull. Exp. Biol. Med., 2006, vol. 141, no. 1, pp. 107–112 (in Russian).

13. Introduction to the cell culture, organ and tissue bioengineering. Novitsky V.V., Shakhov V.P., Khlusov I.A. eds. Tomsk, STT, 2004. 386 p. (in Russian).

14. Tverdokhlebov S.I., Bolbasov E.N., Shesterikov E.V. Scaffold materials based on fluorocarbon composites modified with RF magnetron sputtering. Osteogenesis. Y. Lin, ed. Rijeka, InTech, 2012. Pp. 83–116.

15. Medeiros E.S., Glenn G.M., Klamczynski A.P. et al. Solution blow spinning: A new method to produce microand nanofibers from polymer solutions. J. Appl. Polym. Sci., 2009, vol. 113, pp. 2322–2330. DOI: 10.1002/app.30275.

16. Lee Y.-Sh., Collins G., Livingston T., Arinzeh T.L. Neurite extension of primary neurons on electrospun piezoelectric scaffolds. Acta Biomaterialia, 2011, vol. 7, pp. 3877–3886.

17. Owens K., Wendt R.C. Estimation of surface free energy of polymers. J. Appl. Polym. Sci., 1969, vol. 13, pp. 1741D– 1747D.

18. Biological evaluation of medical devices. Part 5: Tests for cytotoxicity: in vitro methods. ISO 10993-5. First Edition. Switzerland, 1992. 7 p.

19. Tietz textbook of clinical chemistry. 3rd ed. Philadelphia, WB Saunders, 1998. (Russ. ed.: Klinicheskoe rukovodstvo po laboratornym testam. pod red. prof. Norberta U. Tica; gl. red. rus. izd. prof. V.V. Men'shikov ; per. s angl. prof. V.V. Men'shikov i dr. Moscow, JuNIMED-Press Publ., 2003. 942 p.).

20. Behravesh E., Yasko A.W., Engel P.S., Mikos A.G. Synthetic biodegradable polymers for orthopaedic applications. Clin Orthop, 1999, vol.367S. S118–S125.

21. Li W.-J., Laurencin C.T., Caterson E.J. et al. Electrospun nanofibrous structure: A novel scaffold for tissue engineering. J Biomed Mater Res A, 2002, vol.60, Issue 4, pp. 613–621 DOI: 10.1002/jbm.10167.

22. Johnson H.J., Northup S.J., Seagraves P.A. et al. Biocompatibility test procedures for materials evaluation in vitro. II. Objective methods of toxicity assessment. J. Biomed. Mater. Res., 1985, vol. 19, pp. 489–508.

23. SanPin 2.1.4.1074-01 Drinking water. Hygienic requirements for water quality of centralized drinking water supply. Quality control. Introduce 01.01.2002. Moscow, Ministry of Health, 2002 (in Russian).

24. Samoilov V.O. Medical biophysics. St. Petersburg, SpetsLit publ., 2007. 560 p. (in Russian).

25. Bundy K.J., Luedeman R. Factors which influence the accuracy of corrosion rate determination of implant materials. Proc. 5th South. Biomed. Eng. Conf., Shreverport, 20–21 October 1986, N.Y., 1986, pp.289–296.

26. Kokubo T., Kushitani H., Ohtsuki C. et al. Chemical reaction of bioactive glass and glass-ceramics with a simulated body fluid. J Mater Sci Mater Med, 1992, vol. 3, pp. 79–83.

27. Lushnikov E.F., Abrosimov A.Yu. Cell death (apoptosis). Moscow, Medicina Publ., 2001. 192 p. (in Russian)


Review

For citations:


Khlusov I.A., Zaitsev K.V., Zhukova O.B., Gostyukhina A.A., Abdulkina N.G., Zaitsev A.A., Kulagina I.V., Tverdokhlebov S.I., Bolbasov E.N., Stankevich K.S. THE DYNAMICS OF IN VITRO DEGRADATION OF NON-WOVEN POLYLACTIDE MATRICES IN MODEL BIOLOGICAL LIQUID. Bulletin of Siberian Medicine. 2013;12(6):73-81. (In Russ.) https://doi.org/10.20538/1682-0363-2013-6-73-81

Views: 770


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1682-0363 (Print)
ISSN 1819-3684 (Online)