Preview

Bulletin of Siberian Medicine

Advanced search

The role of cytoskeleton in the regulation of contractile activity in smooth muscle cells from aorta of rats

https://doi.org/10.20538/1682-0363-2007-1-78-82

Abstract

Influence of cytoskeleton modulation by Colchicine and Cytochalasine B on contractile reactions of smooth muscle segments of rat's aorta caused by physiologically active substances, the membrane's depolarization and cells' striction was investigated by mechanographical method. Microtubules and actinic elements of the cytoskeleton were established to participate in the development of hyper-potassic and phenylephrine -induced contractions as well as in the smooth muscle relaxation induced by cAMP. Cytochalasine B suppresses both kinds of aortic smooth muscle contractions more effectively than Colchicine. Contractile reactions at isoosmotic striction are suppressed only by Cytochalasine. Efficacy of cAMP signal system operating depends on actinic cyto-skeleton integrity.

About the Author

S. V. Gousakova
Сибирский государственный медицинский университет
Russian Federation


References

1. Баскаков М.Б., Медведев М.А., Ковалев И.В. и др. Меха-низмы регуляции функций гладких мышц вторичными посредниками. Томск: Гавань, 1996. 154 с.

2. Шуба М.Ф., Кочемасова Н.Г. Физиология сосудистых гладких мышц. Киев: Наукова думка, 1988. 250 с.

3. Bárány M., Barron J.T., Gu L., Bárány K. Exchange of the actin-bound nucleotide in intact arterial smooth muscle // J. Biol. Chem. 2001. 276. P. 48398-48403.

4. Chitaley K., Webb R.C. Microtubule depolymerization facili-tates contraction of vascular smooth muscle via increased ac-tivation of RhoA/Rho-kinase // Med. Hypotheses. 2001. V. 56. № 3. P. 381-385.

5. Li S., Moon J., Miao H. et al. Signal transduction in matrix contraction and the migration of vascular smooth muscle cells in three-dimensional matrix // J. Vasc. Res. 2003. Ju-ly-Aug. № 40 (4). P. 378-88.

6. Okada Y. Volume expansion-sensing outward-rectifier Cl-channel: fresh start to the molecular indentity and volume sensor // Am. J. Physiol. 1997. V. 273. P. 755-789.

7. Orlov S.N., Tremblay J., Hamet P. Cell volume in vascular smooth muscle is regulated by bumetanide-sensitive ion transport // Am. J. Physiol. 1996. V. 270. P. 1388-1397.

8. Paul R.J., Bowman P.S., Kolodney M.S. Effects of microtu-bule disruption on force, velocity, stiffness and [Ca(2+)](i) in porcine coronary arteries // Am. J. Physiol. Heart Circ. Physiol. 2000. V. 279. № 5. Р. H2493-H2501.

9. Polte T.R., Eichler G.S., Wang N., Ingber D.E. Extracellular matrix controls myosin light chain phosphorylation and cell contractility through modulation of cell shape and cytoskele-tal prestress // Am. J. Physiol. Cell. Physiol. 2004. № 286 (3). P. 518-528.

10. Shaw L., Ahmed S., Austin C., Taggart M.J. Inhibitors of ac-tin filament polymerisation attenuate force but not global in-tracellular calcium in isolated pressurised resistance arteries // J. Vasc. Res. 2003. V. 40. № 1. P. 1-10.

11. Sperelakis N. Properties of calcium channels in cardiac mus-cle and vascular smooth muscle // Molecular. and Cell Biochem. 1990. V. 99. P. 97-109.

12. Zhang D., Wang Z., Jin N. Microtubule disruption modulates the Rho-kinase pathway in vascular smooth muscle // J. Muscle. Res. Cell. Motil. 2001. V. 22. № 2. P. 193-200.


Review

For citations:


Gousakova S.V. The role of cytoskeleton in the regulation of contractile activity in smooth muscle cells from aorta of rats. Bulletin of Siberian Medicine. 2007;6(1):78-82. (In Russ.) https://doi.org/10.20538/1682-0363-2007-1-78-82

Views: 331


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1682-0363 (Print)
ISSN 1819-3684 (Online)