Preview

Бюллетень сибирской медицины

Расширенный поиск

Использование магнитных наночастиц в биомедицине

https://doi.org/10.20538/1682-0363-2008-2-70-78

Аннотация

Применение наноматералов открывает широкие перспективы благодаря появлению у вещества в наноразмерном состоянии уникальных свойств. В настоящее время на основе наночастиц разрабатывают высокoспецифичные диагностические системы и эффектив ные методы терапии. В обзоре рассмотрены основные направления биомедицинского применения магнитных наночастиц: магнитная сепарация, биосенсоры, контрастирование при MRI-диагностике, управляемая локальная гипертермия опухолей, целевая доставка препаратов, генотерапия, а также конструирование тканей.

Об авторах

А. Г. Першина
Сибирский государственный медицинский университет
Россия


Алексей Эдуардович Сазонов
Сибирский государственный медицинский университет
Россия


И. В. Мильто
Сибирский государственный медицинский университет
Россия


Список литературы

1. Губин С.П., Кокшаров Ю.А., Хомутов Г.Б. и др. // Успехи химии. 2005. № 74. В. 6. С. 539.

2. Гусев А.И., Ремпель А.А. Нанокристаллические материалы. М.: Физматлит, 2001. 224 с.

3. Суздалев И.П. Нанотехнология: физико-химия нанокластеров, наноструктур и наноматериалов. М.: КомКнига, 2006. 592 с.

4. Alexiou C., Arnold W., Klein R.J. et al. Locoregional cancer treatment with magnetic drug targeting // Cancer. Res. 2000. V. 60. P. 6641—6648.

5. Amagliani G., Omiccioli E., del Campo A. et al. Development of a magnetic capture hybridization-PCR assay for Listeria monocytogenes direct detection in milk Samples // J. of Applied Microbiology 2006. V. 100. P. 375—383.

6. Berry C., Curtis A. Functionalisation of magnetic nanoparticles for applications in biomedicine // J. Phys. D. Appl. Phys. 2003. V. P. 36.

7. Bonnemain B. Superparamagnetic agents in magnetic resonance imaging: physiochemical characteristics and clinical applications-a review // J. Drug Target. 1998. V. 6. P. 167—174.

8. Bruce I.J., Sen T. Surface Modification of magnetic nanoparticles with alkoxysilanes and their application in magnetic bioseparations // Langmuir. 2005. V. 21. P. 7029—7035.

9. Cartmell S.H., Dobson J., Verschueren S. et al. Mechanical conditioning of bone cells in vitro using magnetic microparticle technology // Eur. Cell. Mater. 2002. V. 4. P. 130—131.

10. Chan D.C.F., Kirpotin D., Bunn P.A. Synthesis and evaluation of colloidal magnetic iron-oxides for the site-speci.c radiofrequencyinduced hyperthermia of cancer // J. Magn. Magn. Mater. 1993. V. 122. P. 374—378.

11. Chang S.Y., Zheng N.-Y., Chen C.-S. et al. Analysis of Peptides and Proteins Affinity-Bound to Iron Oxide Nanoparticles by MALDIMS // J. Am. Soc. Mass. Spectrom. 2007. V. 18. P. 910—918.

12. Chiang C.-L., Sung C.-S., Wu T.-F. et al. Application of superparamagnetic nanoparticles in purification of plasmid DNA from bacterial cells // J. of Chromatography B. 2005. V. 822. P. 54—60.

13. Curtis A. Biomedical aspects of magnetic nanoparticles // Europhysics News. 2003. V. 34. [Эектронный ресурс]. Режим доступа: http://www.europhysicsnews.com/full/24/article2/ article2.html.

14. Dobson J. Gene therapy progress and prospects: magnetic nanoparticle-based gene delivery // Gene Therapy. 2006. V. 13. P. 283—287.

15. Ernest H., Shetty R. Impact of nanotechnology on biomedical sciences: Review of current concepts on convergence of nanotechnology with biology // J. of Nanobiotechnol. 2005. [Электронный ресурс]. Режим доступа: http://www.azonano.com/oars.asp

16. Fortin-Ripoche J.-P., Martina M.-S., Gazeau F. et al. Magnetic targeting of magnetoliposomes to solid tumors with MR imaging monitoring in mice: feasibility // Radiology. 2006. V. 239. № 2. P. 415— 424.

17. Fuentes M., Mateo C., Rodriguez A. et al. Detecting minimal traces of DNA using DNA covalently attached to superparamagnetic nanoparticles and direct PCR-ELISA // Biosensors and Bioelectronics. 2006. V. 21. P. 1574—1580.

18. Gersting S.W., Schillinger U., Lausier J. et al. Gene delivery to respiratory epithelial cells by magnetofection // J. Gene. Med. 2004. V. 6. P. 913—922.

19. Goodwin S., Peterson C., Hob C., Bittner C. Targeting and retention of magnetic targeted carriers (MTCs) enhancing intra-arterial chemotherapy // J. Magn. Magn. Mater. 1999. V. 194. P. 132—139.

20. Grimm J., Perez J.M., Josephson L., Weissleder R. Novel nanosensors for rapid analysis of telomerase activity // Cancer Research. 2004. V. 64. P. 639—643.

21. Gu H., Xu K., Xu C. et al. Biofunctional magnetic nanoparticles for protein separation and pathogen detection // J. of the American Chemical Society Chem. Commun. 2006. P. 941—949.

22. Harisinghani M.G., Barentsz J., Hahn P. F. et al. Noninvasive detection of clinically occult lymph-node metastases in prostate cancer // N. Engl. J. Med. 2003. V. 348. P. 2491—2499.

23. He X.X., Wang K., Tan W. et al. Bioconjugated nanoparticles for DNA protection from cleavage // J. Am. Chem. Soc. 2003. V. 125. P. 7168—1769.

24. Hilger I., Fruhauf K., Andra W. et al. Heating potential of iron oxides for therapeutic purposes in interventional radiology // Acad. Radiol. 2002. V. 9. P. 198—202.

25. Hong J., Gong P., Xu D. et al. Stabilization of chymotrypsin by covalent immobilization on amine-functionalized superparamagnetic nanogel // J. of Biotechnology. 2007. V. 128. P. 597—605.

26. Hong J., Gong P., Xu D. et al. Stabilization of chymotrypsin by covalent immobilization on amine-functionalized superparamagnetic nanogel // J. of Biotechnology. 2007. V. 128. P. 597—605.

27. Ito A., Takizawa Y., Honda H. et al. Tissue engineering using magnetite nanoparticles and magnetic force: heterotypic layers of cocultured hepatocytes and endothelial cells // Tissue Eng. 2004. V. 10. P. 833—840.

28. Ito A., Hayashida M., Honda H. et al. Construction and Harvest of Multilayered Keratinocyte Sheets Using Magnetite Nanoparticles and Magnetic Force // Tissue Engineering. 2004. V. 10. P. 873— 880.

29. Ito A., Shincai M., Honda H., Kobayashi T. Medical application of functionalized magnetic nanoparticles // J. of bioscience and bioengineering. 2005. V. 100. P. 1—11.

30. Jain T.K., Morales M.A., Sahoo S.K. et al. Iron oxide nanoparticles for sustained delivery of anticancer agents // Am. Chem. Soc. 2003. V. 125 (51). P. 15754 —15755.

31. Jeng J., Lin M.-F., Cheng F.-Y. et al. Using high-concentration trypsin-immobilized magnetic nanoparticles for rapid in situ protein digestion at elevated temperature // Rapid Commun. Mass Spectrom. 2007. V. 21. P. 3060—3068.

32. Jordan A., Wust P., Scholz R. et al. Scientific and clinical applications of magnetic carriers. New York: Plenum Press, 1997. P. 569.

33. Jordan A., Wust P., Fahling H. et al. Inductive heating of ferrimagnetic particles and magnetic fluids: physical evaluation of their potential for hyperthermia // Int. J. Hyerthermia. 1997. V. 9. P. 51—68.

34. Josephson L., Tung C.-H., Moore A., Weissleder R. High-efficiency intracellular magnetic labeling with novel superparamagnetic-tat peptide conjugates // Bioconjugate Chem. 1999. V. 10. P. 186— 191.

35. Jurgons R., Seliger C., Hilpert A. et al. Drug loaded magnetic nanoparticles for cancer therapy // J. Phys. Condens. Matter. 2006. V. 18. P. 2893—2902.

36. Koneracka M., Kopcansky P., Antalik M. et al. Immobilization of proteins and enzymes to fine magnetic particles // J. Magn. Magn. Mater. 1999. V. 201. P. 427.

37. Koneracka M., Kopcansky P., Timko M. et al. Direct binding procedure of proteins and enzymes to fine magnetic particles // J. Magn. Magn. Mater. 2002. V. 252. P. 409.

38. Kouassi G.K., Irudayaraj J., McCarty G. Activity of glucose oxidase functionalized onto magnetic nanoparticles // BioMagnetic Research and Technology 2005. V. 3 [Электронный ресурс] режимдоступа: http://www.biomagres.com/ content/3/1/1

39. Krofitz F., de Wit C., Sohn H.-Y. et al. Magnetofection — a highlyefficient tool for antisense oligonucleotide delivery in vitro and in vivo // Mol. Ther. 2003. V. 7. P. 700—710.

40. Kularatne B.Y., Lorigan P., Browne S. et al. Monitoring tumour cells in the peripheral blood of small cell lung cancer patients // Cytometry. 2002. V. 50. P. 160—167.

41. Lacava L.M. et al. Magnetic resonance of a dextran-coated magnetic fluid intravenously administered in mice // Biophys. J. 2001. V. 80. P. 2483—2486.

42. Lang C., Schuler D. Biogenic nanoparticles: production, characterization, and application of bacterial magnetosomes // J. Phys.: Condens. Matter. 2006. V. 18. P. 2815—2828.

43. Liao M.-H., Chen D.-H. Immobilization of yeast alcohol dehydrogenase on magnetic nanoparticles for improving its stability // Biotechnology Letters. 2001. V. 23. P. 1723—1727.

44. Lu A.-H., Salabas E.L., Schuth F. Magnetic nanoparticles: synthesis, protection, functionalization, and application // Angew. Chem. Int. Ed. 2007. V. 46. P. 1222—1244.

45. Lubbe A.S., Alexiou C., Bergemann C. Clinical applications of magnetic drug targeting // J. Surg. Res. 2001 V. 95. P. 200—206.

46. Lubbe A.S., Bergemann C., Brock J., McClure D.G. Physiological aspects in magnetic drug-targeting // J. of Magnetism and Magnetic Materials. 1999. V. 194. P. 149—155.

47. Lubbe A.S., Bergemann C., Huhnt W. et al. Preclinical experiences with magnetic drug targeting: tolerance and efficacy // Cancer Res. 1996. V. 56. P. 4694—4701.

48. Martina M.-S., Fortin J.-P., Mefnager C. et al. Generation of superparamagnetic liposomes revealed as highly efficient MRI contrast agents for in vivo imaging // J. Am. Chem. Soc. 2005. V. 127. P. 10676—10685.

49. Matsuoka F., Shincai M., Honda H. et al. Hyperthermia using magnetite cationic liposomes for hamster osteosarcoma // Biomagn. Res. Technol., 2004. V. 2. [Электронный ресурс]. Режим доступа: http://bmc.ub.uni-potsdam.de/1477-044X-2-3/1477-044X-23. pdf.

50. Molday R.S., MacKenzie D. Immunospecifc ferromagnetic iron-dextran reagents for the labeling and magnetic separation of cells // J. Immunol. Methods. 1982. V. 52. P. 353—367.

51. Molday R.S., Mackenzie D. Immunospecific ferromagnetic iron-dextran reagents for the labeling and separation of cells // J. of Immunological Methods. 1982. V. 52. P. 353—367.

52. Morisada S., Miyata N., Iwahori K. Immunomagnetic separation of scum-forming bacteria using polyclonal antibody that recognizes mycolic acids // J. Microbiol. Methods. 2002. V. 51. P. 141—148.

53. Mykhaylyk O., Cherchenko A., Ilkin A. et al. Glial brain tumor targeting of magnetite nanoparticles in rats // J. Magn. Magn. Mater. 2001. V. 225. P. 241—247.

54. Neilsen O.S., Horsman M., Overgaard J. A future hyperthermia in cancer treatment? // E. J. Cancer. 2001. V. 37. P. 1587—1589.

55. Pan B., Cui D., Sheng Y. et al. Dendrimer-modified magnetic nanoparticles enhance efficiency of gene delivery system // Cancer Res. 2007. V. 67. P. 8156—8163.

56. Pankhurst Q.A., Connolly J., Jones S.K., Dobson J. Applications of magnetic nanoparticles in biomedicine // J. Phys. D. Appl. Phys. 2003. V. 36. P. 167—181.

57. Pap T., Gay R.E., Muller-Ladner U., Gay S. Ex vivo gene transfer in the years to come // Arthritis. Res. 2002. V. 4. P. 10—12.

58. Pardoe H., Chua-Anusorn W., St. Pierre T. G., Dobson J. Structural and magnetic properties of nanoscale iron oxide particles synthesized in the presence of dextran or polyvinyl alcohol // J. Magn. Magn. Mater. V. 225. P. 41—46.

59. Pedro Tartaj P., Serna C.J. Synthesis of monodisperse superparamagnetic Fe/Silica nanospherical composites // J. Am. Chem. Soc. 2003. № 125 (51). Р. 15754—15755.

60. Perez J.M., Josephson L., O’Loughlin T. et al. Magnetic relaxation switches capable of sensing molecular interactions // Nat. Biotechnol. 2002. V. 20. P. 816—820.

61. Portet D., Denoit B., Rump E. et al. Nonpolymeric coatings of iron oxide colloids for biological use as magnetic resonance imaging contrast agents // J. Coll. Inter. Sci. 2001. V. 238. P. 37—42.

62. Robinson D.B., Persson H.H.J., Zeng H. et al. DNA-Functionalized MFe2O4 (M = Fe, Co, or Mn) Nanoparticles and Their Hybridization to DNA-Functionalized Surfaces // Langmuir 2005. V. 21. P. 3096— 3103.

63. Roy I., Ohulchanskyy T.Y., Bharali D.J. et al. Optical tracking of organically modified silica nanoparticles as DNA carriers: A nonviral, nanomedicine approach for gene delivery // Proc. Nat. Acad. Sci. USA. 2005. V. 102 (2). P. 279—284.

64. Salata O.V. Applications of nanoparticles in biology and medicine [Электронный ресурс]. Режим доступа: http://www.jnanobiotechnology. com/content/2/1/3

65. Schillinger U., Brill T., Rudolph C. et al. Advances in magnetofection — magnetically guided nucleic acid delivery // J. Magn. Magn. Mater. 2005. V. 293. P. 501—508.

66. Sudimack J., Lee R.J. Targeted drug delivery via the folate receptor // Adv. Drug Del. Rev. 2000. V. 41. P. 147—162.

67. Suzuki M., Honda H., Kobayashi T. et al. Development of a targetdirected magnetic resonance-contrast agent using monoclonal antibodyconjugated magnetic particles // Brain Tumor Pathology. 1996. V. 13. P. 127—132.

68. Suzuki M., Shincai M., Honda H., Kobayashi T. Anticancer effect and immune induction by hyperthermia of malignant melanoma using magnetite cationic liposomes // Melanoma Res. 2003. V. 13. P. 129—135.

69. Tan W., Wang K., He X. et al. Bionanotechnology based on silica nanoparticles // Medicinal Research Reviews. 2004. V. 24. № 5. P. 621—638.

70. Tan W., Wang K., He X. et al. Bionanotechnology based on silica nanoparticles // Medicinal Research Reviews. 2004. V. 24. № 5. P. 621—638.

71. Tan W., Wang K., He X. et al. Bionanotechnology based on silica nanoparticles // Medicinal Research Reviews. 2004. V. 24. № 5. P. 621—638.

72. Taylor J.I., Hurst C.D., Davies M.J. et al. Application of magnetite and silica—magnetite composites to the isolation of genomic DNA// J. of Chromatography A. 2000. V. 890. P. 159—166.

73. Tibbe A., de Grooth B., Greve J. et al. Optical tracking and detection of immunomagnetically selected and aligned cells // Nature Biotechnol. 1999. V. 17. P. 1210—1213.

74. Tomasovicova N., Koneracka M., Kopcansky P. et al. Infrared study of biocompatible magnetic nanoparticles // Measurement Science Review. 2006. V. 6. № 3. P. 32—35.

75. Weissleder R., Bogdanov A., Neuwelt E.A. et al. Long circulating iron oxides for MR imaging // Adv. Drug. Delivery Rev. 1995. V. 16. P. 321—334.

76. Weller D., A. Moser A. Thermal effect limits in ultrahigh densitymagnetic recording // IEEE Trans. Magn. 1999. V. 35. P. 4423— 4439.

77. Widder K.J., Senyei A.E., Scarpelli D.G. Magnetic microspheres:a model system for site specific drug delivery in vivo // Proc. Soc. Exp. Biol. Med. 1978. V. 58. P. 141—146.

78. Xu C., Xu K., Gu H. et al. Dopamine as A robust anchor to immobilize functional molecules on the iron oxide shell of magnetic nanoparticles // J. Am. Chem. Soc. 2004. V. 126 (32). P. 9938— 9939.

79. Xu L., Frederik P. and Pirollo K.F. Self-Assembly of A virusmimicking nanostructure system for efficient tumour-targeted gene delivery // Hum. Gene. Ther. 2002. V. 13. P. 469—481.

80. Zhang Y., Kohler N., Zhang M. Surface modification of superparamagnetic magnetite nanoparticles and their intracellular uptake // Biomaterials 2002. V. 23. P. 1553—1561.

81. Zhao M., Josephson L., Tang Y., Weissleder R. Magnetic sensorsfor protease assays // Angew. Chem. Int. Ed. Engl. 2003. V. 42. P. 1375—1378.

82. Zhao X.X., Tapec-Dytioco R., Wang K., Tan W. Collection of trace amounts of DNA/mRNA molecules using genomagnetic nanocapturers // Anal. Chem. 2003. V. 75 (14). P. 3476—3483.

83. Zigeuner R.E., Riesenberg R., Pohla H. et al. Isolation of circulating cancer cells from whole blood by immunomagnetic cell enrichment and unenriched immunocytochemistry in vitro // J. Urol. 2003. V. 169. P. 701—705.


Рецензия

Для цитирования:


Першина А.Г., Сазонов А.Э., Мильто И.В. Использование магнитных наночастиц в биомедицине. Бюллетень сибирской медицины. 2008;7(2):70-78. https://doi.org/10.20538/1682-0363-2008-2-70-78

For citation:


Pershina A.G., Sazonov A.E., Milto I.V. Application of magnetic nanoparticles in biomedicine. Bulletin of Siberian Medicine. 2008;7(2):70-78. (In Russ.) https://doi.org/10.20538/1682-0363-2008-2-70-78

Просмотров: 663


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 1682-0363 (Print)
ISSN 1819-3684 (Online)