Preview

Bulletin of Siberian Medicine

Advanced search

OXIDATIVE STRESS: ITS ROLE IN INSULIN SECRETION, HORMONE RECEPTION BY ADIPOCYTES AND LIPOLYSIS IN ADIPOSE TISSUE

https://doi.org/10.20538/1682-0363-2014-3-32-39

Abstract

Oxidative stress is one of the pathogenetic components of many diseases during which generation of reactive oxigen species increases and the capacity of the antioxidant protection system diminishes. In the research of the last decades special attention has been given to adipose tissue, production of adipokines by it and their role in development of immunoresistance associated with formation of the metabolic syndrome and diabetes.
Search for methods of therapeutic correction of adipokine secretion disorders, their influence on metabolism of separate cells and the organism on the whole as well as development of new approaches to correction of disorders in cell sensitivity to insulin are extremely topical nowadays. Systematization and consolidation of accumulated data allow to determine the strategies of further research more accurately; as a result, we have attempted to summarize and analyze the accumulated data on the role of adipose tissue in oxidative stress development.
On the basis of literature data and the results of the personal investigations, the role of adipose tissue in forming oxidative stress in diabetes has been analyzed in the article. Brief description of adipose tissue was given as a secretory organ regulating metabolic processes in adipocytes and influencing functions of various organs and systems of the body. Mechanisms of disorder in insulin secretion as well as development of insulin sesistance in type I diabetes were described along with the contribution of lipolysis in adipose tissue to these processes.

About the Authors

V. V. Ivanov
Siberian State Medical University, Tomsk
Russian Federation
Ivanov Vladimir V


Ye. V. Shakhristova
Siberian State Medical University, Tomsk
Russian Federation
Shakhristova Yevgeniya V.


Ye. A. Stepovaya
Siberian State Medical University, Tomsk
Russian Federation
Stepovaya Yelena A.


O. L. Nosareva
Siberian State Medical University, Tomsk
Russian Federation
Nosareva Olga L.


T. S. Fyodorova
Siberian State Medical University, Tomsk
Russian Federation
Fyodorova Tatiyana S.


N. V. Ryazantseva
Siberian State Medical University, Tomsk
Russian Federation
Ryazantseva Natalia V.


V. V. Novitsky
Siberian State Medical University, Tomsk
Russian Federation
Novitsky Vyacheslav V.


References

1. Suntsov Yu.I., Bolotskaya L.L., Maslova O.V., Kazakov I.V. Diabetes Mellitus, 2011, no. 1, pp. 15–18 (in Russian).

2. Dubininа Ye.Ye. Products of metabolism of oxygen in the functional activity of cells (life and death, creation and destruction). Physiological and clinical-biochemical aspects. St. Petersburg, Medical Press Publ., 2006. 400 р. (in Russian).

3. Lushchak V.I. Biochemistry, 2007, vol. 72, no. 8, рр. 995–1015 (in Russian).

4. Menshchikova E.B., Zenkov N.K., Lankin V.Z., Bondar I.A., Trufakin V.A. Oxidative stress: Pathological conditions and diseases. Novosibirsk, ART Publ., 2008. 284 р. (in Russian).

5. Furukawa S., Fujita T., Shimabukuro M. Increased oxidative stress in obesity and its impact on metabolic syndrome. Clin. Invest., 2004, Dec., vol. 114, no. 12, pp. 1752–1761. doi: 10.1172/JCI200421625.

6. Ivanov V.V., Shakhristova Ye.V., Stepovaya Ye.A., Zhavoronok T.V., Novitsky V.V. Bull. Exp. Biol. Med., 2011, vol. 151, no. 3, рр. 314–317 (in Russian).

7. Kolchanov N.A., Voevoda M.I., Kuznetsova T.N., Mordvinov V.A., Ignat'eva Ye.V. Bulletin of the Russian Academy of medical Sciences, 2006, vol. 120, no. 2, рр. 29–42 (in Russian).

8. Yu Yi-H., Ginsberg H.N. Adipocyte signaling and lipid homeostasis. Circulation Research., 2005, May, vol. 6, pp. 1042–1052. Epub. 2005. Jan. 13.

9. Gale S.M., Gastracane V.D., Mantzoros C.S. Energy homeostasis, obesity and eating disorders: recent advances in endocrinology. J. Nutr., 2004, Feb., vol. 134, no. 2, pp. 295–298. Epub. 2003. Oct. 14.

10. Jequier F. Leptin signaling, adiposity and energy balance. Ann. NY Acad. Sci., 2002, Jun., vol. 967, no. 6778, pp. 379–388. doi: 10.1111/j.1749-6632.2002.tb04293.x. Epub. 2006. Jan. 24.

11. Frübeck G., Gomez-Ambrosi J., Muruzabal F.J., Burrell M.A. The adipocyte: a model for integracion of endocrine and metabolic signaling in energy metabolism regulation. Am. J. Physiol. Endocrinol. Metab., 2001, Jun., vol. 280, no. 6, pp. Е827–Е847.

12. Shvarts V. Problems of Endocrinology, 2009, vol. 55, no. 1, рр. 38–44 (in Russian).

13. Festa M., Ricciardelli G., Mele G., Pietropaolo C., Ruffo A., Colonna A. Overexpression of H ferritin and up-regulation of iron regulatory protein genes during differentiation of 3T3-L1 pre-adipocytes. J. Biol. Chem., 2000, Nov., vol. 275, no. 47, pp. 36708–36712. doi: 10.1074/jbc.M004988200. Epub. 2000. Sep. 7.

14. Fardoun R.Z. The use of vitamin E in type 2 diabetes mellitus. Clin. Exp. Hypertens., 2007, Apr., vol. 29, no. 3, pp. 135–148. doi: 10.1080/10641960701361601.

15. Davì G., Falco A., Patrono C. Lipid peroxidation in diabetes mellitus. Antioxid. Redox. Signal, 2005, Jan-Feb., vol. 7, no. 1–2, pp. 256–268. doi: 10.1089/ars.2005.7.256. Epub. 2004. Dec. 22.

16. Brownlee M. The patho iology of diabetic complications: a unifying mechanism. Diabetes, 2005, Jun., vol. 54, pp. 1615–1625. doi: 10.2337/diabetes.54.6.1615.

17. Giacco F., Brownlee M. Oxidative stress and diabetic complications. Circ. Res., 2010, Oct., vol. 107, no. 9, pp. 1058–1070. doi: 10.1161/CIRCRESAHA.110.223545. Epub. 2010. Sep. 10.

18. Bloch-Damti A., Bashan N. Proposed mechanisms for the induction of insulin resistance by oxidative stress. Antioxid. Redox. Signal, 2005, Nov/Dec., vol. 7, no. 11–12, pp. 1553– 1567. doi: 10.1089/ars.2005.7.1553. Epub. 2005. Dec. 15.

19. Rains J.L., Jain S.K. Oxidative stress, insulin signaling, and diabetes. Free Radic. Biol. Med., 2011, Mar., vol. 50, no. 5, pp. 567–575. doi: 10.1016/j.freeradbiomed.2010.12.006. Epub. 2010. Dec. 13.

20. Eriksson J.W. Metabolic stress in insulin's target cells leads to ROS accumulation – a hypothetical common pathway causing insulin resistance. FEBS Lett., 2007, Jul., vol. 581, no. 19, pp. 3734–3742. doi: http://dx.doi.org/10.1016/j.febslet. 2007.06.044.

21. Ivanov V.V., Stennikova M.P., Fyodorova T.S. Bulletin of Siberian Medicine, 2005, vol. 4, suppl. 1, рр. 1189–1211 (in Russian).

22. Ivanov V.V., Lusta I.V., Satrikhina T.N., Udintsev N.A. Problems of Endocrinology, 1990, vol. 6, no. 2, рр. 77–80 (in Russian).

23. Lenzen S. The mechanisms of alloxanand streptozotocininduced diabetes. Diabetology, 2008, Feb., vol. 51, no. 2, pp. 216–226. Epub. 2007. Dec. 18.

24. Wang G., Wang J., Ma H., Khan M.F. Increased nitration and carbonylation of proteins in MRL+/+ mice exposed to trichloroethene: potential role of protein oxidation in autoimmunity. Toxicol. Appl. Pharmacol., 2009, Jun., vol. 237, no. 2, pp. 188–195. doi: 10.1016/j.taap.2009.03.010. Epub. 2009. Mar. 28.

25. Ivanov V.V., Shakhristova Ye.V., Stepovaya Ye.A., Zhavoronok T.V., Novitsky V.V. Bulletin of Siberian Medicine, 2011, vol. 10, no. 3, рр. 44–47 (in Russian).

26. Shakhristova Ye.V., Stepovaya Ye.A., Ivanov V.V., Nosareva О.L., Dzuman А.N., Ryazantseva N.V., Novitsky V.V. Molecular Medicine, 2014, no. 1, рр. 44–47 (in Russian).

27. Ivanov V.V., Shakhristova Ye.V., Stepovaya Ye.A., Zhavoronok T.V., Novitsky V.V. Bulletin of the Russian Academy of Medical Sciences, 2010, vol. 30, no. 6, pp. 101–104 (in Russian).

28. Kulinsky V.I., Kolesnichenko L.S. Biomeditsinskaya Khimiya, 2009, vol. 55, no. 3, pp. 255–277 (in Russian).

29. Gilge J.L., Fisher M., Chai Y.C. The effect of oxidant and the non-oxidant alteration of cellular thiol concentration on the formation of protein mixed-disulfides in HEK 293 cells. PLoS One, 2008, vol. 3, no. 12, pp. 4015. doi: 10.1371/journal.pone.0004015. Epub. 2008. Dec. 24.

30. Ivanov V.V., Vasenyova I.V., Udintsev N.A. Problems of Endocrinology, 1984, vol. 30, no. 1, рр. 70–73 (in Russian).

31. Sitozhevsky A.V., Lusta I.V., Trofimov A.V., Ivanov V.V. Problems of Endocrinology, 1994, vol. 40, no. 3, рр. 39–41 (in Russian).

32. Morimoto C., Kiyama A., Kameda K., Ninomiya H., Tsujita T., Okuda H. Mechanism of the stimulatory action of okadaic acid on lipolysis in rat fat cells. Lipid. Res., 1998, Feb., vol. 41, pp. 199–204. Epub. 1999. Sep. 30.

33. Shakhristova Ye.V., Ivanov V.V., Stepovaya Ye.A., Novitsky V.V. Influence of superoxide anion radical and glutathione on lipolysis in adipocytes of rats at oxidative stress induced by alloxan. Siberian Journal of Science, 2012, no. 4(5), рр. 258–266. Available at: http://sjs.tpu.ru/journal/article/view/458 (accessed 4 February 2014) (in Russian).

34. Bashan N., Kovsan J., Kachko I., Ovadia H., Rudich A. Positive and negative regulation of insulin signaling by reactive oxygen and nitrogen species. Physiol. Rev., 2009, Jan., vol. 89, no. 1, pp. 27–71. doi: 10.1152/physrev.00014.2008.

35. Rudich A., Tirosh A., Potashnik R., Hemi R., Kanety H., Bashan N. Prolonged oxidative stress impairs insulin-induced GLUT4 translocation in 3T3-L1 adipocytes. Diabetes, 1998, Oct., vol. 47, no. 10, pp. 1562–1569. doi: 10.2337/diabetes.47.10.1562.

36. Ribière C., Jaubert A.M., Sabourault D., Lacasa D., Giudicelli Y. Insulin stimulates nitric oxide production in rat adipocytes. Biochem. Biophys. Res. Communn, 2002, Feb., vol. 291, no. 2, pp. 394–399. doi: http://dx.doi.org/10.1006/bbrc.2002. 6444.

37. Gaudiot N., Ribière C., Jaubert A.M., Giudicelli Y. Endogenous nitric oxide is implicated in the regulation of lipolysis through antioxidant-related effect. Am. J. Physiol. Cell Physiol., 2000, Nov., vol. 279, no. 5, pp. C1603–С1610.

38. Pilon G., Penfornis P., Marette A. Nitric oxide production by adipocytes: a role in the pathogenesis of insulin resistance? Horm. Metab. Res., 2000, Nov/Dec., vol. 32, no. 11–12, pp. 480–484. doi: 10.1055/s-2007-978674.

39. Ivanov V.V., Stennikova M.P., Pereboeva L.A., Udintsev N.A. Ukrainian Biochemical Journal, 1987, vol. 59, no. 2, рр. 57–61 (in Russian).

40. Ivanov V.V., Stennikova M.P. Problems of Medical Chemistry, 1993, vol. 39, no. 4, рр. 23–25 (in Russian).

41. Gao Z., Zhang X., Zuberi A., Hwang D., Quon M.J., Lefevre M., Ye J. Inhibition of insulin sensitivity by free fatty acids requires activation of multiple serine kinases in 3T3-L1 adipocytes. Mol. Endocrinol., 2004, Aug., vol. 18, no. 8, pp. 2024–2034. doi: http://dx.doi.org/10.1210/me.2003- 0383. Epub. 2003. Oct. 01.

42. Szkudelski T., Szkudelska K., Nogowski L. Effects of adenosine A1 receptor antagonism on lipogenesis and lipolysis in isolated rat adipocytes. Physiol. Res., 2009, Nov., vol. 58, no. 6, pp. 863–871. Epub. 2008. Dec. 17.

43. Newsholme P., Haber E.P., Hirabara S.M., Rebelato E.L., Procopio J., Morgan D., Oliveira-Emilio H.C., Carpinelli A.R., Curi R. Diabetes associated cell stress and dysfunction: role of mitochondrial and non-mitochondrial ROS production and activity. J. Physiol., 2007, Aug., vol. 583, no. 1, pp. 9–24. doi: 10.1113/jphysiol.2007.135871. Epub. 2007. Jun. 21.

44. Kahn S.E. The relative contributions of insulin resistance and beta-cell dysfunction to the pathophysiology of type 2 diabetes. Diabetologia, 2003, Jan., vol. 46, no. 1, pp. 3–19. Epub. 2003. Jan. 11.

45. Klebanova E.M., Balabolkin M.I., Kreminskaja V.M. Сlinical Medicine, 2007, vol. 85, no. 7, рр. 20–27 (in Russian).


Review

For citations:


Ivanov V.V., Shakhristova Ye.V., Stepovaya Ye.A., Nosareva O.L., Fyodorova T.S., Ryazantseva N.V., Novitsky V.V. OXIDATIVE STRESS: ITS ROLE IN INSULIN SECRETION, HORMONE RECEPTION BY ADIPOCYTES AND LIPOLYSIS IN ADIPOSE TISSUE. Bulletin of Siberian Medicine. 2014;13(3):32-39. (In Russ.) https://doi.org/10.20538/1682-0363-2014-3-32-39

Views: 1647


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1682-0363 (Print)
ISSN 1819-3684 (Online)