Insulin-positive cells in liver and exocrine part of pancreas in animals with experimental diabetes mellitus
https://doi.org/10.20538/1682-0363-2020-4-6-13
Abstract
Aim. To compare the number of insulin+ cells in the liver and exocrine part of the pancreas with the type of experimental diabetes, blood glycose and glycated hemoglobin (HbA1с) level and with the number of Pdx1+ cells.
Materials and methods. The experiment was carried out on 25 male Wistar rats (weighting (303.0 ± 25.3) g) that were divided into 3 groups: the first group consisted of intact animals, the second had animals with experimental diabetes type 1, and the third with animals with experimental diabetes type 2. Biochemical, immunohistochemical, ELISA methods and statistical analysis were used.
Results. Insulin+ and Pdx1+ cells of rats with experimental diabetes were found in the liver and exocrine part of pancreas. The highest number of insulin+ cells in the liver was detected in type 2 diabetes (T2D). A strong positive correlation between the number of insulin+ cells in the liver and level of glycosylated hemoglobin in theblood was revealed in both type 1 and type 2 diabetes.
Conclusion. Insulin+ cells are detected in the liver and acinar part of pancreas of both intact rats and rats with experimental diabetes. Group with T2D is characterized by the highest number of insulin+ cells in the liver
compared with type 1 diabetes (T1D). The localization of insulin+ cells in the liver changes depending on the type of diabetes. In T2D insulin+ cells are located in all parts of liver acini, meanwhile in animals with T1D such cells are mainly detected in the periportal area. The expression of Pdx1+ in acinar cells of pancreas and liver cells is likely a mechanism for their reprogramming into insulin+ cells in experimental diabetes mellitus.
About the Authors
M. B. BaykenovaRussian Federation
106, Pervomaiskaya Str., Yekaterinburg, 620219, Russian Federation
19, Mira Str., Yekaterinburg, 620002, Russian Federation
V. A. Chereshnev
Russian Federation
106, Pervomaiskaya Str., Yekaterinburg, 620219, Russian Federation
K. V. Sokolova
Russian Federation
106, Pervomaiskaya Str., Yekaterinburg, 620219, Russian Federation
19, Mira Str., Yekaterinburg, 620002, Russian Federation
I. F. Gette
Russian Federation
106, Pervomaiskaya Str., Yekaterinburg, 620219, Russian Federation
V. V. Emelianov
Russian Federation
19, Mira Str., Yekaterinburg, 620002, Russian Federation
I. G. Danilova
Russian Federation
106, Pervomaiskaya Str., Yekaterinburg, 620219, Russian Federation
References
1. Harris-Hayes M., Schootman M., Schootman J.C., Hastings M.K. The Role of physical therapists in fighting the type 2 diabetes epidemic. J. Orthop. Sports. Phys. Ther. 2020; 50 (1): 5–16.
2. Salinno C., Cota P., Bastidas-Ponce A., Tarquis-Medina M., Lickert H, Bakhti M.β-Cell maturation and identity in health and disease. International Journal of Molecular Sciences. 2019; 20 (21): 5417–5422.
3. Moin A.S.M., Butler A.E. Alterations in betacell identity in type 1 and type 2 diabetes. Current Diabetes Reports. 2019; 19 (9): 83. DOI: 10.1007/s11892-019-1194-6.
4. Hui H., Perfetti R. Рancreas duodenum homeobox-1 regulates pancreas development during embryogenesis and islet cell function in adulthood. European Journal of Endocrinology. 2002; 146 (2): 129–141. DOI: 10.1530/eje.0.1460129.
5. Oster A., Jensen J., Serup P., Galante P., Madsen O.D., Larsson L.I. Rat endocrine pancreatic development in relation to two homeobox gene products (Pdx-1 and Nkx 6.1). Histochem. Cytochem. 1998; 46 (6): 707–715.
6. Kojima H., Fujimiya M., Matsumura K., Nakahara T., Hara M., Chan L. Extrapancreatic insulin producing cells in multiple organs in diabetes. PNAS. 2004; 101 (8): 2458–2463. DOI: 10.1073/pnas.0308690100.
7. Beamish C.A., Strutt B.J., Arany E.J., Hill D.J. Insulin- positive, Glut2-low cells present within mouse pancreas exhibit lineage plasticity and are enriched within extra-islet endocrine cell clusters. Islets. 2016; 8 (3): 65–82. DOI: 10.1080/19382014.2016.1162367.
8. Dong-Sik H., Juyoung S., Ji-Won K., Heon-Seok P., Jae- Hyoung C., Kun-Ho Y. Generation of functional insulin- producing cells from neonatal porcine liver-derived cells by PDX1/VP16, BETA2/NeuroD and MafA. PLoS One. 2013; 8 (11): 76-79.
9. Данилова И.Г., Гетте И.Ф. Способ моделирования аллоксанового диабета. Патент на изобретение № 2534411; 2014.
10. Спасов А.А., Воронкова М.П., Сингур Г.Л., Чепляева Н.И., Чепурнова М.В. Экспериментальная модель сахарного диабета типа 2. Биомедицина.2011; (3): 12–18.
11. Hewitt S.M., Baskin D.G., Frevert C.W., Stahl W.L., Rosa-Molinar E. Controls for immunohistochemistry: the Histochemical Society’s standards of practice for validation of immunohistochemical assays. J. Histochem. Cytochem. 2014; 62 (10): 693–697. DOI: 10.1369/0022155414545224.
12. Seeberger K.L., Anderson S.J., Ellis C.E., Yeung T.Y., Korbutt G.S. Identification and differentiation of PDX1 β-cell progenitors within the human pancreatic epithelium. World J. Diabetes. 2014; 5 (1): 59–68. DOI: 10.4239/wjd.v5.i1.59.
13. Иммуногистохимические методы: руководство; пер. с англ. под ред. Г.А. Франка, П. Г. Малькова. М., 2011: 224.
14. Geerts A. History, heteogeneity, developmental biology, and functions of quiescent hepatic stellate cells. Semin. Liver Dis. 2001; 21: 311–335.
15. Kojima Н., Fujimiya M., Terashima T., Kimura H., Chan L. Extrapancreatic proinsulin/insulin-expressing cells in diabetes mellitus: Is history repeating itself? Endocr. J. 2006; 53 (6): 715–722.
16. Okada T., Kimura A., Kanki K., Nakatani S., Nagahara Y., Hiraga M. et al. Liver Resident macrophages (Kupffer cells) share several functional antigens in common with endothelial cells. Scandinavian Journal of lmmunology Experimental Immunology. 2016; 83: 139–150.
17. Банин В.В., Белоусова Т.А., Быков В.Л. и др. Terminologia histologica. Международные термины по цитологии и гистологии человека с официальным списком русских эквивалентов: справочное пособие; под ред. В.В. Банина, В.Л. Быкова. М.: ГЭОТАР-Медиа, 2009: 272.
18. Vekemans K., Braet F. Structural and functional aspects of the liver and liver sinusoidal cells in relation to colon carcinoma metastasis. World J. Gastroenterol. 2005; 1 (33): 5095–5102. DOI: 10.3748/wjg.v11.i33.5095.
19. Chakrabarti S.K., James J.C., Mirmira R.G. Quantitative assessment of gene targeting in vitro and in vivo by the pancreatic transcription factor, PDX1. Importance of chromatin structure in directing promoter binding. J. Biol. Chem. 2002; 277: 13286–13293.
20. Andrali S., Smapley M, Vanderford N., Ozcan S. Glucose regulation of insulin gene expression in pancreatic β-cells. Biochemical Journal. 2008; 415 (1): 1–10.
21. Koblas T., Leontovyc I., Loukotova S., Kosinova L., Saudek F. Reprogramming of pancreatic exocrine cells AR42J into insulin-producing cells using mRNAs for PDX1, Ngn3, and MafA transcription Factors. Official Journal of the American Society of Gene & Cell Therapy. 2016; 5: 1–12.
Review
For citations:
Baykenova M.B., Chereshnev V.A., Sokolova K.V., Gette I.F., Emelianov V.V., Danilova I.G. Insulin-positive cells in liver and exocrine part of pancreas in animals with experimental diabetes mellitus. Bulletin of Siberian Medicine. 2020;19(4):6-13. https://doi.org/10.20538/1682-0363-2020-4-6-13