Preview

Bulletin of Siberian Medicine

Advanced search

High-fat, high-carbohydrate diet-induced experimental model of metabolic syndrome in rats

https://doi.org/10.20538/1682-0363-2020-4-14-20

Abstract

Purpose. The study is focused on development of high-fat, high-carbohydrate diet-induced experimental model of metabolic syndrome (MS) in rats.

Materials and methods. The 6-week old Wistar rats (n = 20) were used for study. Rats were separated into control and experimental groups. The rats from the control group were fed standard rat chow. The rats from the experimental group had a high-fat, high-carbohydrate diet rich in lard (17%) and fructose (17%) and  drank 20% fructose solution. At the end of the study, body weight and blood pressure (BP) were assessed. After 12 weeks of a diet load, an oral glucose tolerance test (GTT) and insulin tolerance test (ITT) were carried out. Lipid and protein biochemical parameters in plasma were analyzed. Adipose tissue and liver were measured at the end of the study. The levels of triacylglycerol (TAG) and cholesterol (Сh) in the liver were determined by enzymatic methods.

Results. High-fat, high-carbohydrate diet feeding in rats for 12 weeks led to BP elevation and increase in the adipose tissue/body weight ratio. Hyperglycemia, impaired glucose tolerance and insulin resistance were found in rats with MS by means of GTT and ITT. Elevation of plasma TAG level was observed in the experimental group, although plasma total Сh and HDL-Ch did not differ from those of controls. Liver/body weight ratio and the level of TAG and Ch in the liver were elevated in rats with MS.

Conclusion. Experimental rat model of diet-induced MS reproduces many aspects of MS in humans. This model may be useful for studying the pathophysiology of MS and methods for its prevention and treatment.

About the Authors

J. G. Birulina
Siberian State Medical University
Russian Federation
2, Moscow Trakt, Tomsk, 634050, Russian Federation


V. V. Ivanov
Siberian State Medical University
Russian Federation
2, Moscow Trakt, Tomsk, 634050, Russian Federation


E. E. Buyko
Siberian State Medical University; National Research Tomsk Polytechnic University
Russian Federation

2, Moscow Trakt, Tomsk, 634050, Russian Federation

30, Lenina Av., Tomsk, 634050, Russian Federation



V. V. Bykov
Siberian State Medical University; Innovative Pharmacology Research
Russian Federation

2, Moscow Trakt, Tomsk, 634050, Russian Federation

79/4, Elizarovikh Str., Tomsk, 634021, Russian Federation



l V. Smagliy
Siberian State Medical University
Russian Federation
2, Moscow Trakt, Tomsk, 634050, Russian Federation


A. V. Nosarev
Siberian State Medical University
Russian Federation
2, Moscow Trakt, Tomsk, 634050, Russian Federation


I. V. Petrova
Siberian State Medical University
Russian Federation
2, Moscow Trakt, Tomsk, 634050, Russian Federation


S. V. Gusakova
Siberian State Medical University
Russian Federation
2, Moscow Trakt, Tomsk, 634050, Russian Federation


O. S. Popov
Siberian State Medical University
Russian Federation
2, Moscow Trakt, Tomsk, 634050, Russian Federation


V. N. Vasilev
Siberian State Medical University
Russian Federation
2, Moscow Trakt, Tomsk, 634050, Russian Federation


References

1. Alberti K.G., Zimmet P., Shaw J. Metabolic syndrome-a new world-wide definition. A consensus statement from the International Diabetes Federation. Diabet. Med. 2006; 23 (5): 469–480. DOI: 10.1111/j.1464-5491.2006.01858.x.

2. Saklayen M.G. The global epidemic of the metabolic syndrome. Curr. Hypertens. Rep. 2018; 20 (2): 12. DOI: 10.1007/s11906-018-0812-z.

3. Aydin S., Aksoy A., Aydin S., Kalayci M., Yilmaz M., Kuloglu T., Citil C., Catak Z. Today’s and yesterday’s of pathophysiology: Biochemistry of metabolic syndrome and animal models. Nutrition. 2014; 30 (1): 1–9. DOI: 10.1016/j.nut.2013.05.013.

4. Potenza M.V., Mechanick J.I. The metabolic syndrome: definition, global impact, and pathophysiology. Nutr. Clin. Pract. 2009; 24 (5): 560–577. DOI: 10.1177/0884533609342436.

5. Fowler M.J. Microvascular and macrovascular complications of diabetes. Clinical Diabetes. 2008; 26 (2): 77–82. DOI: 10.2337/diaclin.26.2.77.

6. Ройтберг Г.Е. Метаболический синдром. М.: МЕД-М54 пресс-информ, 2007: 224.

7. Кравчук Е.Н., Галагудза М.М. Экспериментальные модели метаболического синдрома. Артериальная гипертензия. 2014; 20 (5): 377–383. DOI: 10.18705/1607-419X-2014-20-5-377-383.

8. Байрашева В.К., Пчелин И.Ю., Егорова А.Э., Василькова О.Н., Корнюшин О.В. Экспериментальные модели алиментарного ожирения у крыс. Juvenis Scientia. 2019; 9–10: 8–13. DOI: 10.32415/jscientia.2019.09-10.02.

9. Kwitek A.E. Rat models of metabolic syndrome. Methods Mol. Biol. 2019; 2018: 269–285. DOI: 10.1007/978-1-4939-9581-3_13.

10. Panchal S.K., Brown L. Rodent models for metabolic syndrome research. J. Biomed. Biotechnol. 2011; 2011: 351982. DOI: 10.1155/2011/351982.

11. Gancheva S., Zhelyazkova-Savova M., Galunska B., Chervenkov T. Experimental models of metabolic syndrome in rats. Scripta Scientifica Medica. 2015; 47 (2): 23–30. DOI: 10.14748/ssm.v47i2.1145.

12. Moreno-Fernández S., Garcés-Rimón M., Vera G., Astier J., Landrier J.F., Miguel M. High fat/high glucose diet induces

13. metabolic syndrome in an experimental rat model. Nutrients. 2018; 10 (10): 1502. DOI: 10.3390/nu10101502.

14. Lim J.S., Mietus-Snyder M., Valente A., Schwarz J.M., Lustig R.H. The role of fructose in the pathogenesis of NAFLD and the metabolic syndrome. Nat. Rev. Gastroenterol. Hepatol. 2010; 7: 251–264. DOI: 10.1038/nrgastro.2010.41.

15. Panchal S.K., Poudyal H., Iyer A., Nazer R., Alam A., Diwan V., Kauter K., Sernia C., Campbell F., Ward L., Gobe G., Fenning A., Brown L. High-carbohydrate high-fat diet-induced metabolic syndrome and cardiovascular remodeling in rats. J. Cardiovasc. Pharmacol. 2011; 57 (5): 611–624. DOI: 10.1097/FJC.0b013e31821b1379.

16. Sadowska J., Bruszkowska M. Comparing the effects of sucrose and high-fructose corn syrup on lipid metabolism and the risk of cardiovascular disease in male rats. Acta Sci. Pol. Technol. Aliment. 2017; 16 (2): 231–240. DOI: 10.17306/J.AFS.0482.

17. Dupas J., Feray A. Goanvec C., Guernec A., Samson N., Bougaran P., Guerrero F., Mansourati J. Metabolic syndrome and hypertension resulting from fructose enriched diet in Wistar rats. Biomed. Res. Int. 2017; 2017: 2494067. DOI: 10.1155/2017/2494067.

18. Patarrao R.S., Lautt W.W., Macedo M.P. Assessment of methods and indexes of insulin sensitivity. Rev. Port. Endocrinol. Diabetes Metab. 2014; 9 (1): 65–73. DOI: 10.1016/j.rpedm.2013.10.004.

19. Folch J., Lees M., Sloane-Stanley G.H. A simple method for the isolation and purification of total lipides from animal tissues. J. Biol. Chem. 1957; 226 (1): 497–509.

20. Dobiásová M., Frohlich J. The plasma parameter log (TG/HDL-C) as an atherogenic index: correlation with lipoprotein particle size and esterification rate in apoB- lipoprotein-depleted plasma (FER(HDL)). Clin. Biochem. 2001; 34 (7): 583–588. DOI: 10.1016/s0009-9120(01)00263-6.

21. Nagai Y., Yonemitsu S., Erion D.M., Iwasaki T., Stark R., Weismann D., Dong J., Zhang D., Jurczak M.J., Löffler M.G., Cresswell J., Yu X.X., Murray S., Bhanot S., Monia B.P., Bogan J.S., Samuel V., Shulman G.I. The role of peroxisome proliferator-activated receptor gamma coactivator-1 beta in the pathogenesis of fructose-induced insulin resistance. Cell Metab. 2009; 9 (3): 252–264. DOI: 10.1016/j.cmet.2009.01.011.

22. Dos Santos Lacerda D., Garbin de Almeida M., Teixeira C., De Jesus A., Da Silva Pereira J.E., Martins Bock P., Pegas Henriques J.A., Gomez R., Dani C., Funchal C. Biochemical and physiological parameters in rats fed with high-fat diet: the protective effect of chronic treatment with purple grape juice (Bordo Variety). Beverages. 2018; 4 (4): 100. DOI: 10.3390/beverages4040100.

23. Ткачук В.А., Воротников А.В. Молекулярные механизмы развития резистентности к инсулину. Сахарный диабет. 2014; 2: 29–40. DOI: 10.14341/DM2014229-40.

24. Schaefer E.J., Gleason J.A., Dansinger M.L. Dietary fructose and glucose differentially affect lipid and glucose homeostasis. J. Nutr. 2009; 139 (6): 1257–1262. DOI: 10.3945/jn.108.098186.

25. Alam M.A., Kauter K., Brown L. Naringin improves diet- induced cardiovascular dysfunction and obesity in high carbohydrate, high fat diet-fed rats. Nutrients. 2013; 5 (3): 637–650. DOI: 10.3390/nu5030637.

26. Fernández-Macías J.C., Ochoa-Martínez A.C., Varela- Silva J.A., Pérez-Maldonado I.N. Atherogenic index of plasma: novel predictive biomarker for cardiovascular illnesses. Arch. Med. Res. 2019; 50 (5): 285–294. DOI: 10.1016/j.arcmed.2019.08.009.

27. Basaranoglu M., Basaranoglu G., Sabuncu T., Sentürk H. Fructose as a key player in the development of fatty liver disease. World J. Gastroenterol. 2013; 19 (8): 1166–1172. DOI: 10.3748/wjg.v19.i8.1166.


Review

For citations:


Birulina J.G., Ivanov V.V., Buyko E.E., Bykov V.V., Smagliy l.V., Nosarev A.V., Petrova I.V., Gusakova S.V., Popov O.S., Vasilev V.N. High-fat, high-carbohydrate diet-induced experimental model of metabolic syndrome in rats. Bulletin of Siberian Medicine. 2020;19(4):14-20. https://doi.org/10.20538/1682-0363-2020-4-14-20

Views: 2061


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1682-0363 (Print)
ISSN 1819-3684 (Online)