Preview

Bulletin of Siberian Medicine

Advanced search

Studying GATA3, FOXA1, and ELF5 transcription factors in the evaluation of prognosis in luminal breast cancer patients

https://doi.org/10.20538/1682-0363-2020-4-30-37

Abstract

Background. The identification of predictive molecular markers of luminal breast cancer will help to assess the risk of developing distant metastases and determine a personalized approach to predicting the outcome of the disease during hormone therapy.

The aim of the study was to investigate the relationship between the transcription factors GATA3, FOXA1, and ELF5 in the tumor and the occurrence of distant metastases in patients with luminal subtype of breast cancer during adjuvant hormone therapy.

Materials and methods. The study included 101 patients with breast cancer (aged from 30 years to 81 years, average age (54.8 ± 10.3) years), with stages T14N1–3M0 of the disease. The follow-up period was at least 5 years. The inclusion criteria for the study were luminal molecular genetic subtype of the tumor and lack of preoperative treatment. The exclusion criterion was stage IV disease. The study of transcription factors was carried out by the immunohistochemical method using polyclonal antibodies to GATA3, FOXA1, and ELF5, manufactured by Flarebio (Austria).

Results. Low expression of FOXA1 and ELF5 in the tumor was associated with the development of distant metastases (p = 0.000015 and p = 0.000002, respectively). In addition, it was found that high incidence of hematogenous metastases was associated with heterogeneous expression of FOXA1 (χ2 = 6.42; p = 0.01) and ELF5 (χ2 = 14.46; p = 0.0001) in the tumor. No similar differences were found in the study of GATA3 expression.

Conclusion. The level of expression of transcription factors FOXA1 and ELF5 and their distribution in the primary tumor can be considered as potential molecular markers in assessing the risk of hematogenous metastasis in patients with luminal breast cancer.

About the Authors

S. V. Vtorushin
Siberian State Medical University; Cancer Research Institute, Tomsk National Research Medical Center of the Russian Academy of Sciences
Russian Federation

2, Moscow Trakt, Tomsk, 634050, Russian Federation

5, Kooperativny Str., Tomsk, 634050, Russian Federation



D. V. Vasilchenko
Siberian State Medical University; Cancer Research Institute, Tomsk National Research Medical Center of the Russian Academy of Sciences
Russian Federation

2, Moscow Trakt, Tomsk, 634050, Russian Federation

5, Kooperativny Str., Tomsk, 634050, Russian Federation



M. V. Zavyalova
Siberian State Medical University; Cancer Research Institute, Tomsk National Research Medical Center of the Russian Academy of Sciences
Russian Federation

2, Moscow Trakt, Tomsk, 634050, Russian Federation

5, Kooperativny Str., Tomsk, 634050, Russian Federation



N. V. Krakhmal’
Siberian State Medical University
Russian Federation

2, Moscow Trakt, Tomsk, 634050, Russian Federation



S. V. Patalyak
Cancer Research Institute, Tomsk National Research Medical Center of the Russian Academy of Sciences
Russian Federation

5, Kooperativny Str., Tomsk, 634050, Russian Federation



References

1. Rebecca L., Kimberly D., Ahmedin J. Cancer statistics. 2020. Ca: Cancer J. Clin. 2020; 70 (1): 7–30. DOI: 10.3322/caac.21590.

2. Каприн А.Д., Старинский В.В., Петрова Г.В. Статистика злокачественных новообразований в России в 2018 г. (заболеваемость и смертность). М.: МНИОИ им. П.А. Герцена, филиал ФГБУ «НМИЦ радиологии» Минздрава России, 2019.

3. Shaoxian T., Baohua Y., Xiaoli X., Yufan C., Xiaoyu T., Hongfen L., Rui B., Xiangjie S., Ruohong S., Wentao Y. Characterisation of GATA3 expression in invasive breast cancer: differences in histological subtypes and immunohistochemically defined molecular subtypes. J. Clin. Pathol. 2017; 70 (11): 926–934. DOI: 10.1136/jclinpath-2016-204137.

4. Koboldt D., Fulton R., McLellan M. et al. Comprehensive molecular portraits of human breast tumors. Nature. 2012; 490 (7418): 61–70. DOI: 10.1038/nature11412.

5. Pereira B., Chin S.F., Rueda O.M., Vollan H.K., Provenzano E., Bardwell H.A., Pugh M., Jones L., Russell R., Sammut S.J., Tsui D.W., Liu B., Dawson S.J., Abraham J., Northen H., Peden J.F., Mukherjee A., Turashvili G., Green A.R., McKinney S., Oloumi A., Shah S., Rosenfeld N., Murphy L., Bentley D.R., Ellis I.O., Purushotham A., Pinder S.E., Bоrresen-Dale A.L., Earl H.M., Pharoah P.D., Ross M.T., Aparicio S., Caldas C. The somatic mutation profiles of 2,433 breast cancers refines their genomic and transcriptomic landscapes. Nature Comm. 2016; 7: 11479. DOI: 10.1038/ncomms11479.

6. Liu J., Prager-van der Smissen W.J., Look M.P., Sieuwerts A.M., Smid M., Meijer-van Gelder M.E., Foekens J.A., Hollestelle A., Martens J.W. GATA3 mRNA expression, but not mutation, associates with longer progression-free survival in ER-positive breast cancer patients treated with first-line tamoxifen for recurrent disease. Cancer Letters. 2016; 376 (1): 104–109. DOI: 10.1016/j.canlet.2016.03.038.

7. Calvo J., Sanchez-Cid L., Munoz M., Lozano J.J., Thomson T.M., Fernandez P.L. Infrequent oss of luminal differentiation in ductal breast cancer metastasis. PLoS One. 2013; 8 (10): e78097. DOI: 10.1371/journal.pone.0078097.

8. McCleskey B.C., Penedo T.L., Zhang K., Hameed O., Siegal G.P., Wei S. GATA3 expression in advanced breast cancer: prognostic value and organ-specific relapse. Am. J. Clin. Pathol. 2015; 144 (5): 756–763. DOI: 10.1309/AJCP5MMR1FJVVTPK.

9. Soni A., Ren Z., Hameed O., Chanda D., Morgan C.J., Siegal G.P., Wei S. Breast cancer subtypes predispose the site of distant metastases. Am. J. Clin. Pathol. 2015; 143 (4): 471–478. DOI: 10.1309/AJCPYO5FSV3UPEXS.

10. Rakha E.A., Pareja F.G. New advances in molecular breast cancer pathology. Semin. Cancer Biol. 2020; S1044-579X (20): 30080–30088. DOI: 10.1016/j.semcancer.2020.03.014.

11. Fu X., Pereira R., De Angelis C., Veeraraghavan J., Nanda S., Qin L., Cataldo M.L., Sethunath V., Mehravaran S., Gutierrez C., Chamness G.C., Feng Q., O’Malley B.W., Selenica P., Weigelt B., Reis-Filho J.S., Cohen O., Wagle N., Nardone A., Jeselsohn R., Brown M., Rimawi M.F., Osborne C.K., Schiff R. FOXA1 upregulation promotes enhancer and transcriptional reprogramming in endocrine-resistant breast cancer. Proc. Natl. Acad. Sci. U S A. 2019. 116 (52): 26823–26834. DOI: 10.1073/pnas.1911584116.

12. Forma E., Jozwiak P., Ciesielski P., Zaczek A., Starska K., Brys M., Krzeslak A. Impact of OGT deregulation on EZH2 target genes FOXA1 and FOXC1 expression in breast cancer cells PLoS One. 2018; 13 (6): e0198351. DOI: 10.1371/journal.pone.0198351.

13. He K., Zeng H., Xu X., Li A., Cai Q., Long X. Clinicopathological significance of forkhead box protein A1 in breast cancer: a meta-analysis. Exper. Ther. Med. 2016; 11 (6): 2525–2530. DOI: 10.3892/etm.2016.3229

14. Shou J., Lai Y., Xu J., Huang J. Prognostic value of FOXA1 in breast cancer: a systematic review and meta-analysis. The Breast. 2016; 27: 35–43. DOI: 10.1016/j.breast.2016.02.009.

15. Xu Y., Qin L., Sun T., Wu H., He T., Ya Z., Mo Q., Liao L., Xu J. Twist1 promotes breast cancer invasion and metastasis by silencing Foxa1 expression. Oncogene. 2017; 36 (8): 1157–1166. DOI: 10.1038/onc.2016.286.

16. Oakes S.R., Naylor M.J., Asselin-Labat M.L., Blazek K.D., Gardiner-Garden M., Hilton H.N., Kazlauskas M., Pritchard M.A., Chodosh L.A., Pfeffer P.L., Lindeman G.J., Visvader J.E., Ormandy C.J. The ets transcription factor Elf5 specifies mammary alveolar cell fate. Genes Dev. 2008; 22 (5): 581–586. DOI: 10.1101/gad.1614608.

17. Chakrabarti R., Hwang J., Andres Blanco M., Wei Y., Lukacisin M., Romano R.A., Smalley K., Liu S., Yang Q., Ibrahim T., Mercatali L., Amadori D., Haffty B.G., Sinha S., Kang Y. Elf5 inhibits the epithelial-mesenchymal transition in mammary gland development and breast cancer metastasis by transcriptionally repressing Snail2. Nature Cell Biology. 2012; 14 (11): 1212–1222. DOI: 10.1038/ncb2607.

18. Kalyuga M., Gallego-Ortega D., Lee H.J., Roden D.L., Cowley M.J., Caldon C.E., Stone A., Allerdice S.L., ValdesMora F., Launchbury R., Statham A.L., Armstrong N., Alles M.C., Young A., Egger A., Au W., Piggin C.L., Evans C.J., Ledger A., Brummer T., Oakes S.R., Kaplan W., Gee J.M., Nicholson R.I., Sutherland R.L., Swarbrick A., Naylor M.J., Clark S.J., Carroll J.S., Ormandy C.J. ELF5 Suppresses estrogen sensitivity and underpins the acquisition of antiestrogen resistance in luminal breast cancer. PLoS Biol. 2012; 10 (12): e1001461. DOI: 10.1371/journal.pbio.1001461.

19. Вторушин С.В., Васильченко Д.В., Крахмаль Н.В., Паталяк С.В. Связь GATA3, FOXA1, ELF5 с клиникоморфологическими параметрами люминального рака молочной железы. Journal of Siberian Medical Sciences. 2019; (4): 62–74. DOI: 10.31549/2542-1174-2019-4-62-74.


Review

For citations:


Vtorushin S.V., Vasilchenko D.V., Zavyalova M.V., Krakhmal’ N.V., Patalyak S.V. Studying GATA3, FOXA1, and ELF5 transcription factors in the evaluation of prognosis in luminal breast cancer patients. Bulletin of Siberian Medicine. 2020;19(4):30-37. https://doi.org/10.20538/1682-0363-2020-4-30-37

Views: 936


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1682-0363 (Print)
ISSN 1819-3684 (Online)