Preview

Bulletin of Siberian Medicine

Advanced search

Redox forms of glutathione in malignant lesions of the stomach with varying aggressiveness degrees

https://doi.org/10.20538/1682-0363-2020-4-53-60

Abstract

Aim. To study the levels of reduced and oxidized glutathione (GSH and GSSG, respectively), as well as the thiol status in gastric cancer (GC) tumors of various histological types and grades.

Materials and methods. The indicators were determined by ELISA methods in tumor, peritumoral and visually intact tissues obtained during surgery from 52 patients with GC: 18 patients had a G1-2 adenocarcinoma (AC), 8 with G3 AC, 6 with signet ring cell cancer (SRCC), 14 with combined gastric lesions (CGL) – AC with signet ring cell fragments, 6 with patients with a component of undifferentiated cancer, G4.

Results. In the groups of patients with low-differentiated and undifferentiated tumors, the GSH content in the tumor tissue and the peritumoral zone was higher than in the group of patients with well- and moderately-differentiated tumors. Tumor GSH levels in G3 AC and SRCC exceeded the values in visually intact tissues. Moreover, in the visually intact tissue of patients with SRCC, GSH level was reduced relative to G1-2 AC and CGL. GSH in all tissues of patients with CGL was higher than in patients with G1-2 AC. The lowest level of GSSG in the tumor tissue was registered in SRCC: 27.5% lower than in G1-2 AC and 30.3% lower than in G3 AC. Patients with undifferentiated tumors (G4 AC) had the highest GSH content in all studied tissues: by 29.9% in tumor; by 40.7% in peritumoral zone; and in visually intact tissue not only GSH, but also GSSG was increased by 22.5–25.5% in comparison with AC G1-2. G4 AC was also characterized by a sharp increase in the thiol status in tumor tissues by 80.2 and 89.9% higher than in visually intact and peritumoral tissues, and it was statistically higher than in AC G1-2, AC G3, SRCC and CGL. The ratio of GSH and GSSG was the most informative.

Conclusion. Poor AC differentiation (in the row G1-2, G3, G4) and a change of histological tumor type (AC, SPL and SRCC), i.e. an increase in tumor aggressiveness, were accompanied by the enhancement of reductive processes in tumor tissue, as evidenced by the statistically significant increase in the GSH/GSSG coefficient and a sharp increase in the thiol status in G4 AC.

About the Authors

I. A. Goroshinskaya
National Medical Research Centre for Oncology
Russian Federation
63, 14 Liniya Str., Rostov-on-Don, 344037, Russian Federation



E. I. Surikova
National Medical Research Centre for Oncology
Russian Federation
63, 14 Liniya Str., Rostov-on-Don, 344037, Russian Federation



E. M. Frantsiyants
National Medical Research Centre for Oncology
Russian Federation
63, 14 Liniya Str., Rostov-on-Don, 344037, Russian Federation



I. V. Neskubina
National Medical Research Centre for Oncology
Russian Federation
63, 14 Liniya Str., Rostov-on-Don, 344037, Russian Federation



L. A. Nemashkalova
National Medical Research Centre for Oncology
Russian Federation
63, 14 Liniya Str., Rostov-on-Don, 344037, Russian Federation



D. E. Medvedeva
National Medical Research Centre for Oncology
Russian Federation
63, 14 Liniya Str., Rostov-on-Don, 344037, Russian Federation



A. A. Maslov
National Medical Research Centre for Oncology
Russian Federation
63, 14 Liniya Str., Rostov-on-Don, 344037, Russian Federation



References

1. Jemal A., Bray F., Center M.M., Ferlay J., Ward E., Forman D. Global cancer statistics. Cancer Journal for Clinicians. 2011; 61 (2): 69–90. DOI: 10.3322/caac.20107.

2. Torre L.A., Bray F., Siegel R.L., Ferlay J., Lortet-Tieulent J., Jemal A. Global cancer statistics, 2012. CA: Cancer J. Clin. 2015; 65 (2): 87–108. DOI: 10.3322/caac.21262.

3. Sitarz R., Skierucha M., Mielko J., Offerhaus G.J.A., Maciejewski R., Polkowski W.P. Gastric cancer: epidemiology, prevention, classification, and treatment. Cancer Manag. Res. 2018; 10: 239–248. DOI: 10.2147/CMAR.S149619.

4. American Cancer Society. Cancer Facts & Figures 2016. Atlanta: American Cancer Society; 2016.

5. Henson D.E., Dittus C., Younes M. et al. Differential trends in the intestinal and diffuse types of gastric carcinoma in the United States, 1973–2000: increase in the signet ring cell type. Arch. Pathol. Lab. Med. 2004; 128 (7): 765–770. DOI: 10.1043/1543-2165(2004)128<765:DTITIA>2.0.CO;2.

6. Nie R.C., Yuan S.Q., Li Y.F., Chen Y.M., Chen X.J., Zhu B.Y., Xu L.P., Zhou Z.W., Chen S., Chen Y.B. Clinicopathological characteristics and prognostic value of signet ring cells in gastric carcinoma: a meta-analysis. Journal of Cancer. 2017; 8 (17): 3396–3404. DOI: 10.7150/jca.21017.

7. Gatta G., Capocaccia R., Trama A., Martínez-García C.; RARECARE Working Group. The burden of rare cancers in Europe. Adv. Exp. Med. Biol. 2010; 686: 285–303. DOI: 10.1007/978-90-481-9485-8_17.

8. Prasad S., Gupta S.C., Tyagi A.K. Reactive oxygen species (ROS) and cancer: Role of antioxidative nutraceuticals. Cancer Letters. 2017; 387: 95–105. DOI: 10.1016/j.canlet.2016.03.042.

9. Policastro L.L., Ibañez I.L., Notcovich C., Duran H.A., Podhajcer O.L. The tumor microenvironment: characterization, redox considerations, and novel approaches for reactive oxygen species-targeted gene therapy. Antiox. & Redox Sign. 2013; 19: 854–895. DOI: 10.1089/ars.2011.4367

10. Castaldo S.A., Freitas J.R., Conchinha N.V., Madureira P.A. The tumorigenic roles of the cellular redox regulatory systems. Oxid. Med. Cell. Longev. 2015; Article ID 8413032. DOI: 10.1155/2016/8413032.

11. Andrisic L., Dudzika D., Barbasa C., Milkovicb L., Grunec T., Zarkovic N. Short overview on metabolomics approach to study pathophysiology of oxidative stress in cancer. Redox Biology. 2018; 14: 47–58. DOI: 10.1016/j.redox.2017.08.009.

12. Октябрьский О.Н., Смирнова Г.В. Редокс-регуляция клеточных функций. Биохимия. 2007; 72 (2): 158–175.

13. Dawane J.S., Pandit V.A. Understanding redox homeostasis and its role in cancer. J. Clin. Diagnos. Res. 2012; 6 (10): 1796–1802. DOI: 10.7860/JCDR/2012/4947.2654.

14. Mironczuk-Chodakowska I., Witkowska A.M., Zujko M.E. Endogenous non-enzymatic antioxidants in the human body. Advances in Medical Sciences. 2018; 63 (1): 68–78. DOI: 10.1016/j.advms.2017.05.005.

15. Marí M., Morales A., Colell A., García-Ruiz C., Fernández-Checa J.C. Mitochondrial glutathione, a key survival antioxidant. Antioxid. Redox. Signal. 2009; 11 (11): 2685–2700. DOI: 10.1089/ARS.2009.2695.

16. Samuelsson M., Vainikka L.,Öllinger K. Glutathione in the blood and cerebrospinal fluid: a study in healthy male volunteers. Neuropeptides. 2011; 45 (4): 287–292. DOI: 10.1016/j.npep.2011.05.004.

17. Lushchak V.I. Glutathione homeostasis and functions: potential targets for medical interventions. J. Amino Acids. 2012; 2012: 736837. DOI: 10.1155/2012/736837.

18. Сурикова Е.И., Горошинская И.А., Неродо Г.А., Франциянц Е.М., Малейко М.Л., Шалашная Е.В., Качесова П.С., Немашкалова Л.А., Леонова А.В. Активность редокс-регулирующих систем в опухоли и окружающих ее тканях при различных гистологических вариантах. Биомедицинская химия. 2016; 62 (2): 187– 192. DOI: 10.18097/PBMC20166202187.

19. Франциянц Е.М., Орловская Л.А., Шалашная Е.В., Мусиенко Н.В., Анапалян В.Х. Изменения антиокислительного статуса крови больных неоперабельным раком желудка после проведения химиотерапии. Вопросы онкологии. 1999; 45 (6): 607–611.

20. Korn E.L., Troendle J.F., McShane L.M., Simon R. Controlling the number of false discoveries: application to high-dimensional genomic data. Journal of Statistical Planning and Inference. 2004; 124 (2): 379–398. DOI: 10.1016/S0378-3758(03)00211-8.

21. Wang D., Wang B., Wang R., Zhang Z., Lin Y., Huang G., Lin S., Jiang Y., Wang W., Wang L., Huang Q. High expression of EGFR predicts poor survival in patients with resected T3 stage gastric adenocarcinoma and promotes cancer cell survival. Oncology Letters. 2017; 13 (5): 3003–3013. DOI: 10.3892/ol.2017.5827.

22. Проскурнина Е.В. Методы оценки свободнорадикального гомеостаза крови: дис. … д-ра мед. наук. М., 2018: 221.

23. Aquilano K., Baldelli S., Ciriolo M.R. Glutathione: new roles in redox signaling for an old antioxidant. Front. Pharmacol. 2014; 5: 196. DOI: 10.3389/fphar.00196.

24. Alli J.A., Kehinde A.O., Kosoko A.M., Ademowo O.G. Oxidative stress and reduced vitamins C and E levels are associated with multi-drug resistant tuberculosis. J. Tuberc. Res. 2014; 2: 52–58. DOI: 10.4236/jtr.2014.21006.

25. Chatterjee A. Reduced glutathione: a radioprotector or a modulator of DNA-repair activity? Nutrients. 2013; 5 (2): 525–542. DOI: 10.3390/nu5020525.

26. Sentellas S., Morales-Ibanez O., Zanuy M., Albertí J.J. GSSG/GSH ratios in cryopreserved rat and human hepatocytes as a biomarker for drug induced oxidative stress. Toxicol. Vitr. 2014; 28 (5): 1006–1015. DOI: 10.1016/j.tiv.2014.04.017.

27. Сирота Т.В. Действие серосодержащих соединений на хиноидный процесс автоокисления адреналина; потенциальные нейропротекторы. Биомедицинская химия. 2019; 65 (4): 316–323. DOI: 10.18097/PBMC20196504316.


Review

For citations:


Goroshinskaya I.A., Surikova E.I., Frantsiyants E.M., Neskubina I.V., Nemashkalova L.A., Medvedeva D.E., Maslov A.A. Redox forms of glutathione in malignant lesions of the stomach with varying aggressiveness degrees. Bulletin of Siberian Medicine. 2020;19(4):53-60. https://doi.org/10.20538/1682-0363-2020-4-53-60

Views: 1233


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1682-0363 (Print)
ISSN 1819-3684 (Online)