Preview

Bulletin of Siberian Medicine

Advanced search

Aberrant angiogenesis in brain tissue in experimental Alzheimer’s disease

https://doi.org/10.20538/1682-0363-2020-4-46-52

Abstract

The aim was to study the molecular mechanisms of the violation of the structural and functional integrity of
the blood-brain barrier in chronic neurodegeneration of the Alzheimer’s type associated with the development of cerebral angiopathy.

Materials and methods. The transgenic model of Alzheimer’s disease is the B6SLJ-Tg line mice (APPSwFlLon,
PSEN1 * M146L * L286V) 6799Vas group which includes 9 months aged males. The control group included C57BL / 6 x SJL mice, males aged 9 months.

Results. The total length of the vessels in the area of the dentate gyrus is 2.5 times greater in transgenic animal models of Alzheimer’s disease than in animals of the control group (p < 0.01). The average diameter of blood vessels in all areas of the hippocampus is smaller compared with the control (p < 0.05). Transgenic modeling of neurodegeneration in the CA2 zone of the hippocampus increases the relative area of tissue with increased permeability of blood-brain barrier (BBB) (17.80 [9.15; 36.75]) compared to control (1.38 [0.04; 7.60]) at p < 0.05. A similar difference (p < 0.05) is also observed in the hippocampal area CA1. A tendency (p > 0.05) to decrease the number of CD31+ endothelial cells in the dentate gyrus of the hippocampus (21.52 [17.56; 24.50]) in animals of the experimental group compared with the control group (23.08[21.18; 29.84]) was detected. A similar situation is observed in the CA2 and CA3 areas of the hippocampus.

Conclusion. Neurodegenerative changes in the hippocampus of animals with a transgenic AD model are associated with impaired microcirculation in the brain tissue as a result of a reduction in the diameter and branching of blood vessels, and damage and increased permeability of BBB.

About the Authors

Ya. V. Gorina
Krasnoyarsk State Medical University named after Prof. V.F. Voino-Yasenetsky
Russian Federation
1, Partizan Zheleznyak Str., Krasnoyarsk, 660022, Russian Federation



Yu. K. Komleva
Krasnoyarsk State Medical University named after Prof. V.F. Voino-Yasenetsky
Russian Federation
1, Partizan Zheleznyak Str., Krasnoyarsk, 660022, Russian Federation



E. D. Osipova
Krasnoyarsk State Medical University named after Prof. V.F. Voino-Yasenetsky
Russian Federation
1, Partizan Zheleznyak Str., Krasnoyarsk, 660022, Russian Federation



A. V. Morgun
Krasnoyarsk State Medical University named after Prof. V.F. Voino-Yasenetsky
Russian Federation
1, Partizan Zheleznyak Str., Krasnoyarsk, 660022, Russian Federation



N. A. Malinovskaya
Krasnoyarsk State Medical University named after Prof. V.F. Voino-Yasenetsky
Russian Federation
1, Partizan Zheleznyak Str., Krasnoyarsk, 660022, Russian Federation



O. L. Lopatina
Krasnoyarsk State Medical University named after Prof. V.F. Voino-Yasenetsky
Russian Federation
1, Partizan Zheleznyak Str., Krasnoyarsk, 660022, Russian Federation



A. B. Salmina
Krasnoyarsk State Medical University named after Prof. V.F. Voino-Yasenetsky
Russian Federation
1, Partizan Zheleznyak Str., Krasnoyarsk, 660022, Russian Federation



References

1. Kumfor F., Piguet O. Emotion recognition in the dementias: brain correlates and patient implications. Neurodegener Dis. Manag. 2013; 3 (3): 277–288. DOI: 10.2217/nmt.13.16.

2. Chui H.C., Ramirez-Gomez L. Clinical and imaging features of mixed Alzheimer and vascular pathologies. Alzheimers Res. Ther. 2015; 7 (1): 21. DOI: 10.1186/s13195-015-0104-7.

3. Kalaria R.N. Small vessel disease and Alzheimer’s dementia: pathological considerations. Cerebrovasc Dis. 2002; 13 (2): 48–52. DOI: 10.1159/000049150.

4. Goos J.D.C., Kester M.I., Barkhof F., Klein M., Blankenstein M.A., Scheltens P. van der Flier W.M. Patients with Alzheimer disease with multiple microbleeds. Stroke. 2009; 40 (11): 3455–3460. DOI: 10.1161/STROKEAHA.109.558197.

5. Garcia-Alloza M., Gregory J., Kuchibhotla K.V., Fine S., Wei Y., Ayata C., Frosch M.P., Greenberg S.M., Bacskai B.J. Cerebrovascular lesions induce transient β-amyloid deposition. Brain. 2011; 134 (12): 3694–3704. DOI: 10.1093/brain/awr300.

6. Uryu K., Laurer H., McIntosh T., Praticò D., Martinez D., Leight S., Lee V.M., Trojanowski J.Q. Repetitive mild brain trauma accelerates Aβ deposition, lipid peroxidation, and cognitive impairment in a transgenic mouse model of alzheimer amyloidosis. J. Neurosci. 2002; 22 (2): 446–454. DOI: 10.1523/JNEUROSCI.22-02-00446.2002.

7. Sengillo J.D., Winkler E.A., Walker C.T., Sullivan J.S., Johnson M., Zlokovic B.V. Deficiency in mural vascular cells coincides with blood-brain barrier disruption in Alzheimer’s disease. Brain Pathol. 2013; 23 (3): 303–310. DOI: 10.1111/bpa.12004.

8. Montagne A., Barnes S.R., Sweeney M.D., Halliday M.R., Sagare A.P., Zhao Z., Toga A.W., Jacobs R.E., Liu C.Y., Amezcua L., Harrington M.G., Chui H.C., Law M., Zlokovic B.V. Blood-brain barrier breakdown in the aging human hippocampus. Neuron. 2015; 85 (2): 296–302. DOI: 10.1016/j.neuron.2014.12.032.

9. Manaenko A., Chen H., Kammer J., Zhang J. H., Tang J. Comparison Evans blue injection routes: intravenous versus intraperitoneal, for measurement of blood-brain barrier in a mice hemorrhage model. J. Neurosci. Methods. 2011; 195 (2): 206–210. DOI: 10.1016/j.jneumeth.2010.12.013.

10. Encinas J.M., Enikolopov G. Identifying and quantitating neural stem and progenitor cells in the adult brain. Methods Cell Biol. 2008; 85: 243–272. DOI: 10.1016/S0091-679X(08)85011-X.

11. Kalaria R.N. Neuropathological diagnosis of vascular cognitive impairment and vascular dementia with implications for Alzheimer’s disease. Acta Neuropathol. 2016; 131 (5): 659–685. DOI: 10.1007/s00401-016-1571-z.

12. Grammas P., Moore P., Weigel P.H. Microvessels from Alzheimer’sdisease brains kill neurons in vitro. Am. J. Pathol. 1999; 154 (2): 337–342. DOI: 10.1016/S0002-9440(10)65280-7.

13. Biron K.E., Dickstein D.L., Gopaul R., Jefferies W.A. Amyloid triggers extensive cerebral angiogenesis causing blood brain barrier permeability and hypervascularity in Alzheimer’s disease. PLoS One. 2011; 6 (8): e23789. DOI: 10.1371/journal.pone.0023789.

14. Burgmans S., van de Haar H.J., Verhey F.R.J., Backes W.H. Amyloid-β interacts with blood-brain barrier function in dementia: a systematic review. J. Alzheimers Dis. 2013; 35 (4): 859–873. DOI: 10.3233/JAD-122155.

15. Marco S., Skaper S.D. Amyloid beta-peptide1-42 alters tight junction protein distribution and expression in brain microvessel endothelial cells. Neurosci. Lett. 2006; 401 (3): 219–224. DOI: 10.1016/j.neulet.2006.03.047.

16. Jais A., Brüning J.C. Hypothalamic inflammation in obesity and metabolic disease. J. Clin. Invest. 2017; 127 (1): 24–32. DOI: 10.1172/JCI88878.

17. Davidson T.L., Monnot A., Neal A.U., Martin A.A., Horton J.J., Zheng W. The effects of a high-energy diet on hippocampal-dependent discrimination performance and blood-brain barrier integrity differ for diet-induced obese and diet-resistant rats. Physiol. Behav. 2012; 107 (1): 26–33. DOI: 10.1016/j.physbeh.2012.05.015.


Review

For citations:


Gorina Ya.V., Komleva Yu.K., Osipova E.D., Morgun A.V., Malinovskaya N.A., Lopatina O.L., Salmina A.B. Aberrant angiogenesis in brain tissue in experimental Alzheimer’s disease. Bulletin of Siberian Medicine. 2020;19(4):46-52. https://doi.org/10.20538/1682-0363-2020-4-46-52

Views: 1195


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1682-0363 (Print)
ISSN 1819-3684 (Online)