Preview

Bulletin of Siberian Medicine

Advanced search

Comparative analysis of N-acetyltransferase 2 genotyping results among patients with newly diagnosed pulmonary tuberculosis residing in the Sakha Republic (Yakutia)

https://doi.org/10.20538/1682-0363-2020-4-102-109

Abstract

Aim. To assess the variability of the NAT2 gene and to comparatively analyze the prevalence of NAT2 polymorphisms and acetylation types among Yakut and Russian patients newly diagnosed with pulmonary tuberculosis (TB), permanently residing in the Sakha Republic (Yakutia).

Materials and methods. The study included 197 patients with newly diagnosed pulmonary TB (132 Yakuts and 65 Russians) aged (43.3 ± 14.4). The following single-nucleotide polymorphisms were analyzed, using real-time polymerase chain reaction (PCR): NAT2*5 (rs1801280, Т341С), NAT2*6 (rs1799930, G590A),  NAT2*7 (rs1799931, G857A), NAT2*11 (rs1799929, C481T), NAT2*12 (rs1208, A803G), and NAT2*13 (rs1041983, C282T). Genetically determined basal metabolic rates were calculated using the NATpred online tool.

Results. 75% of residents, both of Yakut and Russian ethnicity, were identified as carriers of NAT2 polymorphic variants known to be related to isoniazid biotransformation. NAT2*6 and *13 allelic variants were more frequent in  Yakuts (occurring in 40.9% and 64.4%, respectively); variants NAT2*5, *6, *11, *12, and *13 were more common in Russians (69.2; 55.4; 67.7; 69.2, and 64.6%, respectively). The NAT2*5, *7, *11, and *12 polymorphisms were found to be significantly ethnicity-dependent. The study established substantial prevalence of medium acetylation type (58.3%) in Yakuts and slow acetylation type in Russians (61.5%). Correlations were shown between ethnicity and different prevalence rates of rapid, medium, or slow acetylation types among patients with TB.

Conclusion. The observed NAT2 polymorphism distribution patterns and isoniazid acetylation types among Yakut and Russian patients with newly diagnosed pulmonary TB demonstrated that pharmacologic  responses can be significantly different between ethnic groups. Findings of pharmacogenetic studies in Yakut and Russian populations should be incorporated in clinical practice for personalized administration of isoniazid.

About the Authors

N. M. Krasnova
M.K. Ammosov North-Eastern Federal University
Russian Federation
58, Belinsky Str., Yakutsk, 677000, Russian Federation


E. N. Efremova
Phthisiatry Research-Practice Center
Russian Federation
93, Petr Alekseev Str., Yakutsk, 677000, Russian Federation



A. A. Egorova
Phthisiatry Research-Practice Center
Russian Federation
93, Petr Alekseev Str., Yakutsk, 677000, Russian Federation



O. I. Filippova
Phthisiatry Research-Practice Center
Russian Federation
93, Petr Alekseev Str., Yakutsk, 677000, Russian Federation



Y. V. Chertovskikh
Republican Clinical Hospital No. 3
Russian Federation
34, Kirov Str., Yakutsk, 677027, Russian Federation


Z. A. Rudykh
Republican Clinical Hospital No. 3
Russian Federation
34, Kirov Str., Yakutsk, 677027, Russian Federation


E. A. Alekseeva
Republican Clinical Hospital No. 3
Russian Federation
34, Kirov Str., Yakutsk, 677027, Russian Federation


T. E. Tatarinova
Republican Clinical Hospital No. 3
Russian Federation
34, Kirov Str., Yakutsk, 677027, Russian Federation


D. A. Sokorutov
M.K. Ammosov North-Eastern Federal University
Russian Federation
58, Belinsky Str., Yakutsk, 677000, Russian Federation


N. S. Val
Phthisiatry Research-Practice Center
Russian Federation
93, Petr Alekseev Str., Yakutsk, 677000, Russian Federation


M. K. Vinokurova
Phthisiatry Research-Practice Center
Russian Federation
93, Petr Alekseev Str., Yakutsk, 677000, Russian Federation


A. F. Karvchenko
Phthisiatry Research-Practice Center
Russian Federation
93, Petr Alekseev Str., Yakutsk, 677000, Russian Federation


A. I. Vengerovskii
Siberian State Medical University
Russian Federation
2, Moscow Trakt, Tomsk, 634050, Russian Federation



D. A. Sychev
Russian Medical Academy of Continuous Professional Education
Russian Federation
2/1, Barrikadnaya Str., Moscow, 125993, Russian Federation


References

1. Степанова Н.А., Стрельцова Е.Н., Галимзянов Х.М., Кантемирова Б.И. Нежелательные побочные реакции на противотуберкулезные препараты основного ряда. Туберкулез и болезни легких. 2016; 94 (5): 42–45. DOI: 10.21292/2075-1230-2016-94-5-42-45.

2. Chan S.L., Chua A.P.G., Aminkeng F., Chee C.B.E., Jin S., Loh M., Gan S.H., Wang Y.T., Brunham L.R. Association and clinical utility of NAT2 in the prediction of isoniazid-induced liver injury in Singaporean patients. PLoS One. 2017; 12 (10): e0186200. DOI: 10.1371/journal.pone.0186200.

3. Udut V.V., Dygai A.M., Vengerovsky A.I. Effects of phospholipid hepatoprotectors on apoptosis during experimental liver pathology induced by isoniazid and paracetamol. Bulletin of Experimental Biology and Medicine. 2012; 154 (11): 568–571. DOI: 10.1007/s10517-013-2012-9.

4. Richardson M., Kirkham J., Dwan K., Sloan D.J., Davies G., Jorgensen A.L. NAT2 variants and toxicity related to anti-tuberculosis agents: a systematic review and meta-analysis. Int. J. Tuberc. Lung. Dis. 2019; 23 (3): 293–316. DOI: 10.5588/ijtld.18.0324.

5. Сналина Н.Е., Сычев Д.А. Генетические предикторы гепатотоксичности изониазида. Молекулярная медицина. 2018; 16 (2): 31–36. DOI: 10.29296/24999490-2018-02-04.

6. Jarrar Y.B., Balasmeh A.A., Jarrar W. Sequence analysis of the N-acetyltransferase 2 gene (NAT2) among Jordanian volunteers. Libyan J. Med. 2018; 13 (1): 1408381. DOI: 10.1080/19932820.2017.1408381.

7. Khan S., Mandal R.K., Elasbali A.M., Dar S.A., Jawed A., Wahid M., Mahto H., Lohani M., Mishra B.N., Akhter N., Rabaan A.A., Haque S. Pharmacogenetic association between gene polymorphisms and isoniazid induced hepatotoxicity: trial sequence meta-analysis as evidence. Biosci. Rep. 2019; 39 (1): pii: BSR20180845. DOI: 10.1042/BSR20180845.

8. Yadav D., Kumar R., Dixit R.K., Kant S., Verma A., Srivastava K., Singh S.K., Singh S. Association of NAT2 gene polymorphism with antitubercular drug-induced hepatotoxicity in the Eastern Uttar Pradesh population. Cureus. 2019; 11 (4): e4425. DOI: 10.7759/cureus.4425.

9. Dursun R., Dursun H.G., Zamani A.G., Yıldırım M.S., Çınar İ. NAT2 gene polymorphisms in Turkish patients with psoriasis vulgaris. Biomed. Res. Int. 2018; 3258708. DOI: 10.1155/2018/3258708.

10. Birch Kristensen E., Yakimov V., Bjorn-Mortensen K., Soborg B., Koch A., Andersson M., Birch Kristensen K., Michelsen S.W., Skotte L., Ahrendt Bjerregaard A., Blaszkewicz M., Golka K., Hengstler J.G., Feenstra B., Melbye M., Geller F. Study of correlation between the NAT2 phenotype and genotype status among Greenlandic Inuit. EXCLI J. 2018; 17: 1043–1053. DOI: 10.17179/excli2018-1671.

11. Sabbagh A., Darlu P., Crouau-Roy B., Poloni E.S. Arylamine N acetyltransferase 2 (NAT2) genetic diversity and traditional subsistence:a worldwide population survey. PLoS One. 2011; 6 (4): e18507. DOI: 10.1371/journal.pone.0018507.

12. Tang H., Quertermous T., Rodriguez B., Kardia S.L., Zhu X., Brown A., Pankow J.S., Province M.A., Hunt S.C., Boerwinkle E., Schork N.J., Risch N.J. Genetic structure, self-identified race/ethnicity, and confounding in case-control association studies. Amer. J. Human Genet. 2005; 76 (2): 268–275.

13. Kuznetsov I.B., McDuffie M., Moslehi R. A web-server for inferring the human N-acetyltransferase-2 (NAT2) enzymatic phenotype from NAT2 genotype. Bioinformatics. 2009; 25 (9): 1185–1186.

14. Magalon H., Patin E., Austerlitz F., Quintana-Murci L., Heyer E. Population genetic diversity of the NAT2 gene supports a role of acetylation in human adaptation to farming in Central Asia. Eur. J. Hum. Genet. 2008; 16 (2): 243–251. DOI: 10.1038/sj.ejhg.5201963.

15. Xiang Y., Ma L., Wu W., Liu W., Li Y., Zhu X., Wang Q., Ma J., Cao M., Wang Q., Yao X., Yang L., Wubuli A., Merle C., Milligan P., Mao Y., Gu J., Xin X. The incidence of liver injury in Uyghur patients treated for TB in Xinjiang Uyghur Autonomous Region, China, and its association with hepatic enzyme polymorphisms NAT2, CYP2E1, GSTM1 and GSTT1. PLoS One. 2014; 9 (1): e85905. DOI: 10.1371/journal.pone.0085905.

16. Possuelo L.G., Castelan J.A., de Brito T.C., Ribeiro A.W., Cafrune P.I., Picon P.D., Santos A.R., Teixeira R.L., Gregianini T.S., Hutz M.H., Rossetti M.L., Zaha A. Association of slow N-acetyltransferase 2 profile and anti-TB drug-induced hepatotoxicity in patients from Southern Brazil. Eur. J. Clin. Pharmacol. 2008; 64 (7): 673–681. DOI: 10.1007/s00228-008-0484-8.

17. Cramer J.P., Lohse A.W., Burchard G.D., Fischer L., Nashan B., Zimmermann M., Marx A., Kluge S. N-acetyltransferase 2 activity in isoniazid-associated acute hepatitis requiring liver transplantation. Transpl. Int. 2010; 23 (2): 231–233. DOI: 10.1111/j.1432-2277.2009.00921.x.

18. An H.R., Wu X.Q., Wang Z.Y., Zhang J.X., Liang Y. NAT2 and CYP2E1 polymorphisms associated with antituberculosis drug-induced hepatotoxicity in Chinese patients. Clin. Exp. Pharmacol. Physiol. 2012; 39 (6): 535–543. DOI: 10.1111/j.1440-1681.2012.05713.x.

19. Kim S.H., Kim S.H., Bahn J.W., Kim Y.K., Chang Y.S., Shin E.S., Kim Y.S., Park J.S., Kim B.H., Jang I.J., Song J., Kim S.H., Park H.S., Min K.U., Jee Y.K. Genetic polymorphisms of drug-metabolizing enzymes and anti-TB drug-induced hepatitis. Pharmacogenomics. 2009; 10 (11): 1767–1779. DOI: 10.2217/pgs.09.100.

20. Hemanth Kumar A.K., Ramesh K., Kannan T., Sudha V., Haribabu H., Lavanya J., Swaminathan S., Ramachandran G. N-acetyltransferase gene polymorphisms plasma isoniazid concentrations in patients with tuberculosis. Indian J. Med. Res. 2017; 145 (1): 118–123. DOI: 10.4103/ijmr.IJMR_2013_15.

21. Shi J., Xie M., Wang J., Xu Y., Liu X. Susceptibility of N-acetyltransferase 2 slow acetylators to antituberculosis drug-induced liver injury: a meta-analysis. Pharmacogenomics. 2015; 16 (18): 2083–2097. DOI: 10.2217/pgs.15.144.

22. Suvichapanich S., Fukunaga K., Zahroh H., Mushiroda T., Mahasirimongkol S., Toyo-Oka L., Chaikledkaew U., Jittikoon J., Yuliwulandari R., Yanai H., Wattanapokayakit S., Tokunaga K. NAT2 ultra-slow acetylator and risk of anti-tuberculosis drug-induced liver injury: a genotype-based meta-analysis. Pharmacogenet. Genomics. 2018; 28 (7): 167–176. DOI: 10.1097/FPC.0000000000000339.

23. Wang P.Y., Xie S.Y., Hao Q., Zhang C., Jiang B.F. NAT2 polymorphisms and susceptibility to anti-tuberculosis drug-induced liver injury: a meta-analysis. Int. J. Tuberc. Lung Dis. 2012; 16 (5): 589–595. DOI: 10.5588/ijtld.11.0377.

24. Zhang M., Wang S., Wilffert B., Tong R., van Soolingen D., van den Hof S., Alffenaar J.W. The association between the NAT2 genetic polymorphisms and risk of DILI during anti-TB treatment: a systematic review and meta-analysis. Br. J. Clin. Pharmacol. 2018; 84 (12): 2747–2760. DOI: 10.1111/bcp.13722.

25. Lauterburg B., Smith C., Todd E., Mitchell J. Pharmacokinetics of the toxic hydrazine metabolites formed from isoniazid in humans. J. Pharmacol. Exp. Ther. 1985; 235 (3): 566–570.

26. Donald P.R., Sirgel F.A., Venter A., Parkin D.P., Seifart H.I., van de Wal B.W., Werely C., van Helden P.D., Maritz J.S. The influence of human N-acetyltransferase genotype on the early bactericidal activity of isoniazid. Clin. Infect Dis. 2004; 39 (10): 1425–1430.

27. Weiner M., Burman W., Vernon A., Benator D., Peloquin C.A., Khan A., Weis S., King B., Shah N., Hodge T. Low isoniazid concentrations and outcome of tuberculosis treatment with once weekly isoniazid and rifapentine. Am. J. Respir. Crit. Care Med. 2003; 167 (10): 1341–1347.

28. Azuma J., Ohno M., Kubota R., Yokota S., Nagai T., Tsuyuguchi K., Okuda Y., Takashima T., Kamimura S., Fujio Y., Kawase I. Pharmacogenetics-based tuberculosis therapy research group. NAT2 genotype guided regimen reduces isoniazid-induced liver injury and early treatment failure in the 6-month four-drug standard treatment of tuberculosis: A randomized controlled trial for pharmacogenetics-based therapy. Eur. J. Clin. Pharmacol. 2013; 69 (5): 1091–1101. DOI: 10.1007/s00228-012-1429-9.


Review

For citations:


Krasnova N.M., Efremova E.N., Egorova A.A., Filippova O.I., Chertovskikh Y.V., Rudykh Z.A., Alekseeva E.A., Tatarinova T.E., Sokorutov D.A., Val N.S., Vinokurova M.K., Karvchenko A.F., Vengerovskii A.I., Sychev D.A. Comparative analysis of N-acetyltransferase 2 genotyping results among patients with newly diagnosed pulmonary tuberculosis residing in the Sakha Republic (Yakutia). Bulletin of Siberian Medicine. 2020;19(4):102-109. https://doi.org/10.20538/1682-0363-2020-4-102-109

Views: 774


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1682-0363 (Print)
ISSN 1819-3684 (Online)