Preview

Bulletin of Siberian Medicine

Advanced search

Modification of human monocytes and macrophages by magnetic nanoparticles in vitro for cell-based delivery

https://doi.org/10.20538/1682-0363-2020-4-143-150

Abstract

The aim of the study was to develop a method for the modification of human monocytes/macrophages by iron oxide magnetic nanoparticles in vitro.

Materials and methods. Iron oxide magnetic nanoparticles were obtained by a co-precipitation method and coated with a thin SiO2 layer and polyethylene glycol 3000. Murine macrophage-like cell line RAW 264.7, primary human monocytes and macrophages were incubated with magnetic nanoparticles for 1–24 hours. The efficiency of cellular uptake of nanoparticles was measured using a ferrozine-based method and microcopy with Perls’ Prussian blue staining. The cell viability was tested by fluorescent flow cytometry using SYTOX Green.

Results. Incubation of RAW264.7 cell, human monocytes and macrophages with magnetic nanoparticles at a concentration ˃ 5 µg/mL on a rotator for 1 hour at 37 °С provides the loading of nanoparticles into > 99% of cells. The magnetic nanoparticles have no adverse effect on the cell viability. The RAW264.7 cells modified with nanoparticles showed no change in migration activity. The efficiency of the nanoparticle uptake by  macrophages was ˃50 pkg (Fe)/cell.

Conclusion. According to the proposed method, macrophages loaded with magnetic nanoparticles have proved viable, they retain the ability to migrate, and therefore can be used as cell-based delivery systems for tumor diagnostic and therapy.

About the Authors

N. A. Perekucha
Siberian State Medical University
Russian Federation
2, Moscow Trakt, Tomsk, 634050, Russian Federation


P. A. Smolina
Siberian State Medical University
Russian Federation
2, Moscow Trakt, Tomsk, 634050, Russian Federation


A. M. Demin
Postovsky Institute of Organic Synthesis, Ural Branch of Russian Academy of Sciences
Russian Federation
22, S. Kovalevskoy Str., Yekaterinburg, 620990, Russian Federation


V. P. Krasnov
Postovsky Institute of Organic Synthesis, Ural Branch of Russian Academy of Sciences
Russian Federation
22, S. Kovalevskoy Str., Yekaterinburg, 620990, Russian Federation


A. G. Pershina
Siberian State Medical University; National Research Tomsk Polytechnic University
Russian Federation

2, Moscow Trakt, Tomsk, 634050, Russian Federation

30, Lenina Av., Tomsk, 634050, Russian Federation



References

1. Liu X., Zhang Y., Wang Y., Zhu W., Li G., Ma X. et al. Comprehensive understanding of magnetic hyperthermia for improving antitumor therapeutic efficacy. Theranostics. 2020; 10 (8): 3793–3815. DOI: 10.7150/thno.40805.

2. Yu E.Y., Bishop M., Zheng B., Ferguson R.M., Khandhar A.P., Kemp S.J. et al. Magnetic Particle Imaging: A Novel in vivo imaging platform for cancer detection. Nano Lett. 2017; 17 (3): 1648–1654. DOI: 10.1021/acs.nanolett.6b04865.

3. Lee J., Huh Y., Jun Y., Seo J., Jang J., Song H. et al. Artificially engineered magnetic nanoparticles for ultra- sensitive molecular imaging. Nat. Med. 2007; 13 (1): 95– 99. DOI: 10.1038/nm1467.

4. Huang Y., Gao X., Chen J. Leukocyte-derived biomimetic nanoparticulate drug delivery systems for cancer therapy. Acta Pharmaceutica Sinica B. 2018; 8 (1): 4–13. DOI: 10.1016/j.apsb.2017.12.001.

5. Shaghasemi S.B., Virk M.M., Reimhult E. Optimization of magneto-thermally controlled release kinetics by tuning of magnetoliposome composition and structure. Scientific Reports. 2017; 7 (1): 1–10. DOI: 10.1038/s41598-017- 06980-9.

6. Zhao H., Richardson R., Talebloo N., Mukherjee P., Wang P., Moore A. uMUC1-targeting magnetic resonance imaging of therapeutic response in an orthotropic mouse model of colon cancer. Mol. Imaging Biol. 2019; 21 (5): 852–860. DOI: 10.1007/s11307-019-01326-5.

7. Wilhelm S., Tavares A.J., Dai Q., Ohta S., Audet J., Dvorak H.F. et al. Analysis of nanoparticle delivery to tumours. Nature Reviews Materials. 2016; 1 (5): 16014. DOI: 10.1038/natrevmats.2016.14.

8. Huang Y., Gao X., Chen J. Leukocyte-derived biomimetic nanoparticulate drug delivery systems for cancer therapy. Acta Pharmaceutica Sinica B. 2018; 8 (1): 4–13. DOI: 10.1016/j.apsb.2017.12.001.

9. Choi M.R., Stanton-Maxey K.J., Stanley J.K., Levin C.S., Bardhan R., Akin D. et al. A cellular Trojan Horse for delivery of therapeutic nanoparticles into tumors. Nano Letters. 2007; 7 (12): 3759–3765. DOI: 10.1021/nl072209h.

10. Moore T.L., Hauser D., Gruber T., Rothen-Rutishauser B., Lattuada M., Petri-Fink A. et al. Cellular shuttles: monocytes/macrophages exhibit transendothelial transport of nanoparticles under physiological flow. ACS Applied Materials & Interfaces. 2017; 9 (22): 18501–18511. DOI: 10.1021/acsami.7b03479.

11. Han H., Eyal S., Portnoy E., Mann A., Shmuel M., Benifla M. et al. Monocytes as carriers of magnetic nanoparticles for tracking inflammation in the epileptic rat brain. Curr. Drug Deliv. 2019; 16 (7): 637–644. DOI: 10.2174/1567201816666190619122456.

12. Steinfeld U., Pauli C., Kaltz N., Bergemann C., Lee H.-H. T lymphocytes as potential therapeutic drug carrier for cancer treatment. International Journal of Pharmaceutics. 2006; 311 (1–2): 229–236. DOI: 10.1016/j.ijpharm.2005.12.040.

13. Si J., Shao S., Shen Y., Wang K. Macrophages as active nanocarriers for targeted early and adjuvant cancer chemotherapy. Small. 2016; 12 (37): 5108–5119. DOI: 10.1002/smll.201601282.

14. Quatromoni J.G., Eruslanov E. Tumor-associated macrophages: function, phenotype, and link to prognosis in human lung cancer. American Journal of Translational Research. 2012; 4 (4): 376–389.

15. Anselmo A.C., Gilbert G.B., Kumar S., Gupte V., Cohen R.E., Rubner M.F. et al. Monocyte-mediated delivery of polymeric backpacks to inflamed tissues: a generalized strategy to deliver drugs to treat inflammation. Journal of Controlled Release. 2015; 199: 29–36. DOI: 10.1016/j.jconrel.2014.11.027.

16. Hao J., Chen J., Wang M., Zhao J., Wang J., Wang X. et al. Neutrophils, as “Trojan horses”, participate in the delivery of therapeutical PLGA nanoparticles into a tumor based on the chemotactic effect. Drug Deliv. 2020; 27 (1): 1–14. DOI: 10.1080/10717544.2019.1701141.

17. Irvine D.J., Hanson M.C., Rakhra K., Tokatlian T. Synthetic nanoparticles for vaccines and immunotherapy. Chemical Reviews. 2015; 115 (19): 11109–11146. DOI: 10.1021/acs.chemrev.5b00109.

18. Dong X., Chu D., Wang Z. Leukocyte-mediated delivery of nanotherapeutics in inflammatory and tumor sites. Theranostics. 2017; 7 (3): 751–763. DOI: 10.7150/thno.18069.

19. Cao H., Dan Z., He X., Zhang Z., Yu H., Yin Q. et al. Liposomes coated with isolated macrophage membrane can target lung metastasis of breast cancer. ACS Nano. 2016; 10 (8): 7738–7748. DOI: 10.1021/acsnano.6b03148.

20. Tong Y.-I., Kang W., Shi Y., Zhou G., Lu Y. Physiological function and inflamed-brain migration of mouse monocyte- derived macrophages following cellular uptake of superparamagnetic iron oxide nanoparticles – Implication of macrophage-based drug delivery into the central nervous system. Int. J. Pharm. 2016; 505 (1–2): 271–282. DOI: 10.1016/j.ijpharm.2016.03.028.

21. Pershina A.G., Brikunova O.Y., Perekucha N.A., Demin A.M., Shevelev O.B., Malkeyeva D., Kiseleva E., Minin A., Kostikova L.A., Stepanov I.V., Kuznetsov D.K., Shur V.Ya., Krasnov V.P. Supporting data and methods for the characterization of iron oxide nanoparticles conjugated with pH-(low)-insertion peptide, testing their cytotoxicity and analyses of biodistribution in SCID mice bearing MDA- MB231 tumor. Data in Brief. 2020; 29: 105062. DOI: 10.1016/j.dib.2019.105062.

22. Justus C.R., Leffler N., Ruiz-Echevarria M., Yang L.V. In vitro cell migration and invasion assays. J. Vis. Exp. 2014; (88): 51046. DOI: 10.3791/51046.

23. Basel M.T., Balivada S., Wang H., Shrestha T. Cell- delivered magnetic nanoparticles caused hyperthermia- mediated increased survival in a murine pancreatic cancer model. International Journal of Nanomedicine. 2012; 7: 297–306. DOI: 10.2147/IJN.S28344.

24. Madsen S.J., Christie C., Hong S.J., Trinidad A., Peng Q., Uzal F.A. et al. Nanoparticle-loaded macrophage-mediated photothermal therapy: potential for glioma treatment. Lasers in Medical Science. 2015; 30 (4): 1357–1365. DOI: 10.1007/s10103-015-1742-5.

25. Choi J., Kim H.Y., Ju E.J., Jung J., Park J., Chung H.K. et al. Use of macrophages to deliver therapeutic and imaging contrast agents to tumors. Biomaterials. 2012; 33 (16): 4195–4203. DOI: 10.1016/j.biomaterials.2012.02.022.

26. Beduneau A., Ma Z., Grotepas C.B., Kabanov A., Rabinow B.E., Gong N. et al. Facilitated monocyte-macrophage uptake and tissue distribution of superparmagnetic iron-oxide nanoparticles. PLoS ONE. 2009; 4 (2): e4343. DOI: 10.1371/journal.pone.0004343.

27. Luciani N., Gazeaua F., Wilhelm C. Reactivity of the monocyte/macrophage system to superparamagnetic anionic nanoparticles. J. Mater. Chem. 2009; 19 (35): 6373–6380. DOI: 10.1039/b903306h.


Review

For citations:


Perekucha N.A., Smolina P.A., Demin A.M., Krasnov V.P., Pershina A.G. Modification of human monocytes and macrophages by magnetic nanoparticles in vitro for cell-based delivery. Bulletin of Siberian Medicine. 2020;19(4):143-150. https://doi.org/10.20538/1682-0363-2020-4-143-150

Views: 908


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1682-0363 (Print)
ISSN 1819-3684 (Online)