Placental growth factor exerts modulatory effects on in vitro activated T cells
https://doi.org/10.20538/1682-0363-2020-4-158-166
Abstract
Background. Recent studies demonstrated immunosuppressive properties of vascular endothelial growth factor (VEGF-A) and identified VEGF-A as a key mediator of tumor-induced immunosuppression. Placental growth factor (PlGF) is another member of VEGF family in which dramatic elevation is associated with effective immune adaptation in successful pregnancy, whereas low concentrations are related to pregnancy complications resulting from the activation of immune system. Previously, we have shown that activated T cells express VEGF receptor type 1 (VEGFR-1), and PlGF inhibits T cell proliferation in VEGFR-1–dependent manner.
The aim of the present study was to further characterize PlGF effects on T cell responses in vitro.
Materials and methods. Peripheral blood mononuclear cells (PBMC) from healthy donors were stimulated with anti-CD3 monoclonal antibodies (a-CD3) in the absence or presence of PlGF and assessed for IL-10 production, programmed cell death and the expression of inhibitory receptors (PD-1, CTLA-4, Tim-3) in CD4+ and CD8+ T cell subsets.
Results. The addition of PlGF to PBMC cultures activated with a-CD3 resulted in increased percentages of IL- 10-producing CD4+ and CD8+ T cells. Besides, PlGF promoted CD8+ T cells apoptosis while did not affect programmed cell death within CD4+ T cells. Notable, T cell activation with a-CD3 in the presence of PlGF was accompanied by the enhancement of PD-1-expressing cells in CD8+ T cell subset and Tim-3-expressing cells in both CD4+ and CD8+ T cells, and by the increased expression of PD-1 and Tim-3 on T cells.
Conclusion. Our in vitro findings indicate that PlGF can inhibit T cell responses due to the increasing interleukin-10 (IL-10) production, promoting CD8+ T cell apoptosis and enhancing the expression of PD-1 and Tim-3 inhibitory receptors. Given the elevated levels of PlGF in successful pregnancy and its decrease in gestation complications, the obtained data also suggest that PlGF-mediated suppression may be implicated into the governing immune evasion in pregnancy.
About the Authors
E. A. SmetanenkoRussian Federation
14, Yadrintsevskaya Str., Novosibirsk, 630099, Russian Federation
O. Yu. Leplina
Russian Federation
14, Yadrintsevskaya Str., Novosibirsk, 630099, Russian Federation
M. A. Tikhonova
Russian Federation
14, Yadrintsevskaya Str., Novosibirsk, 630099, Russian Federation
N. M. Pasman
Russian Federation
2, Pirogova Str., Novosibirsk, 630090, Russian Federation
A. A. Ostanin
Russian Federation
14, Yadrintsevskaya Str., Novosibirsk, 630099, Russian Federation
E. R. Chernykh
Russian Federation
14, Yadrintsevskaya Str., Novosibirsk, 630099, Russian Federation
References
1. Stuttfeld E., Ballmer-Hofer K. Structure and function of VEGF receptors. IUBMB Life. 2009; 61 (9): 915–922. DOI: 10.1002/iub.234.
2. De Falco S. The discovery of placenta growth factor and its biological activity. Exp. Mol. Med. 2012; 44 (1): 1–9. DOI: 10.3858/emm.2012.44.1.025.
3. Dewerchin M., Carmeliet P. PlGF: a multitasking cytokine with disease-restricted activity. Cold Spring Harb. Perspect Med. 2012; 2 (8): a011056. DOI: 10.1101/cshperspect.a011056.
4. Voron T., Marcheteau E., Pernot S., Colussi O., Tartour E., Taieb J., Terme M. Control of the immune response by pro-angiogenic factors. Front Oncol. 2014; 4: 70. DOI: 10.3389/fonc.2014.00070.
5. Lapeyre-Prost A., Terme M., Pernot S., Pointet A.L., Voron T., Tartour E., Taieb J. Immunomodulatory activity of VEGF in cancer. Int. Rev. Cell Mol. Biol. 2017; 330: 295–342. DOI: 10.1016/bs.ircmb.2016.09.007.
6. Lin Y.L., Liang Y.C., Chiang B.L. Placental growth factor down-regulates type 1 T helper immune response by modulating the function of dendritic cells. J. Leukoc. Biol. 2007; 82 (6): 1473–1480. DOI: 10.1189/jlb.0307164.
7. Ziogas A., Gavalas N., Tsiatas M., Tsitsilonis O., Politi E., Terpos E., Rodolakis A., Vlahos G., Thomakos N., Haidopoulos D., Antsaklis A., Dimopoulos M., Bamias A. VEGF directly suppresses activation of T cells from ovarian cancer patients and healthy individuals via VEGF receptor Type 2. Int. J. Cancer. 2012; 130 (4): 857–864. DOI: 10.1002/ijc.26094.
8. Albonici L., Giganti M., Modesti A., Manzari V., Bei R. Multifaceted role of the placental growth factor (PlGF) in the antitumor immune response and cancer progression. Int. J. Mol. Sci. 2019; 20 (12): е2970. DOI: 10.3390/ijms20122970.
9. Meng F.-J., Xiao S.-X., Zhang Y., Wang W., Wang B., Fan X.-Y. Prognostic significance of placenta growth factor expression in patients with multiple cancers: a meta-analysis. Int. J. Clin. Exp. Med. 2015; 8 (8): 12726–12735.
10. Lecarpentier É., Vieillefosse S., Haddad B., Fournier T., Leguy M., Guibourdenche J., Tsatsaris V. Placental growth factor (PlGF) and sFlt-1 during pregnancy: physiology, assay and interest in preeclampsia. Ann. Biol. Clin. (Paris). 2016; 74 (3): 259–267. DOI: 10.1684/abc.2016.1158.
11. Morelli S., Mandal M., Goldsmith L.T., Kashani B.N., Ponzio N.M. The maternal immune system during pregnancy and its influence on fetal development. Research and Reports in Biology. 2015; 6: 171–189. DOI: 10.2147/RRB.S80652.
12. Slutsky R., Romero R., Xu Y., Galaz J., Miller D., Done B., Tarca A.L., Gregor S., Hassan S.S., Leng Y., Gomez-Lopez N. Exhausted and senescent T cells at the maternal-fetal interface in preterm and term labor. J. Immunol. Res. 2019: 3128010. DOI: 10.1155/2019/3128010.
13. Xu Y., Wang S., Lin Y., Li D., Du M. Tim-3 and PD-1 regulate CD8+ T cell function to maintain early pregnancy in mice. J. Reprod. Dev. 2017; 63 (3): 289–294. DOI: 10.1262/jrd.2016-177.
14. Черных Е.Р., Леплина О.Ю., Тихонова М.А., Баторов Е.В., Останин А.А. Сигналинг через рецептор к фактору роста эндотелия сосудов 1-го типа как новый механизм подавления Т-клеток при опухолевом неоангиогенезе. Медицинская иммунология. 2019; 21 (4): 653–660. DOI: 10.15789/1563-0625-2019-4-653-660.
15. Bottomley M., Webb N., Watson C., Holt L., Bukhari M., Denton J., Freemont A., Brenchley P. Placenta growth factor (PlGF) induces vascular endothelial growth factor (VEGF) secretion from mononuclear cells and is co-expressed with VEGF in synovial fluid. Clin. Exp. Immunol. 2000; 119 (1): 182–188. DOI: 10.1046/j.1365-2249.2000.01097.x.
16. Dikov M., Ohm J., Ray N., Tchekneva E.E., Burlison J., Moghanaki D., Nadaf S., Carbone D.P. Differential roles of vascular endothelial growth factor receptors 1 and 2 in dendritic cell differentiation. J. Immunol. 2005; 174 (1): 215–222. DOI: 10.4049/jimmunol.174.1.215.
17. Koch S., Tugues S., Li X., Gualandi L., Claesson-Welsh L. Signal transduction by vascular endothelial growth factor receptors. Biochem. J. 2011; 437 (2): 169– 183. DOI: 10.1042/BJ20110301.
18. Oh H., Yu C.R., Golestaneh N., Amadi-Obi A., Lee Y.S., Eseonu A., Mahdi R.M., Egwuagu C.E. STAT3 protein promotes T-cell survival and inhibits interleukin-2 production through up-regulation of Class O Forkhead transcription factors. J. Biol. Chem. 2011; 286 (35): 30888–30897. DOI: 10.1074/jbc.M111.253500.
19. Shin J.Y., Yoon I.H., Kim J.S., Kim B., Park C.G. Vascular endothelial growth factor-induced chemotaxis and IL-10 from T cells. Cell Immunol. 2009; 256 (1–2): 72–78. DOI: 10.1016/j.cellimm.2009.01.006.
20. Mobini M., Mortazavi M., Nadi S., Zare-Bidaki M., Pourtalebi S., Arababadi M.K. Significant roles played by interleukin-10 in outcome of pregnancy. Iran J. Basic Med. Sci. 2016; 19 (2): 119–124.
21. Sabat R., Grütz G., Warszawska K., Kirsch S., Witte E., Wolk K., Geginat J. Biology of interleukin-10. Cytokine
22. Growth Factor Rev. 2010; 21 (5): 331–344. DOI: 10.1016/j.cytogfr.2010.09.002.
23. Jankovic D., Kugler D., Sher A. IL-10 production by CD4+ effector T cells: a mechanism for self-regulation. Mucosal. Immunol. 2010; 3 (3): 239–246. DOI: 10.1038/mi.2010.8.
24. Emmerich J., Mumm J.B., Chan I.H., LaFace D., Truong H., McClanahan T., Gorman D.M., Oft M. IL-10 directly activates and expands tumor-resident CD8(+) T cells without de novo infiltration from secondary lymphoid organs. Cancer Research. 2012; 72 (14): 3570–3581. DOI: 10.1158/0008-5472.CAN-12-0721.
25. Smith L.K., Boukhaled G.M., Condotta S.A., Mazouz S., Guthmiller J.J., Vijay R., Butler N.S., Bruneau J., Shoukry N.H., Krawczyk C.M, Richer M.J. Interleukin-10 directly inhibits CD8+ T cell function by enhancing N- glycan branching to decrease antigen sensitivity. Immunity. 2018; 48 (2): 299-312: e5. DOI: 10.1016/j.immuni.2018.01.006.
26. Hou H., Cheng S., Chung K., Wei S., Tsao P., Lu H., Wang H., Yu C. PlGF mediates neutrophil elastase-induced airway epithelial cell apoptosis and emphysema. Respir. Res. 2014; 15 (1): 106. DOI: 10.1186/s12931-014-0106-1.
27. Chiu Y.M., Tsai C.L., Kao J.T., Hsieh C.T., Shieh D.C., Lee Y.J., Tsay G.J., Cheng K.S., Wu Y.Y. PD-1 and PD-L1
28. up-regulation promotes T-cell apoptosis in gastric adenocarcinoma. Anticancer Res. 2018; 38 (4): 2069–2078. DOI: 10.21873/anticanres.12446.
29. Meggyes M., Miko E., Szigeti B., Farkas N., Szereday L. The importance of the PD-1/PD-L1 pathway at the maternal-fetal interface. BMC Pregnancy Childbirth. 2019; 19 (1): 74. DOI: 10.1186/s12884-019-2218-6.
30. Shi F., Shi M., Zeng Z., Qi R., Liu Z., Zhang J., Yang Y., Tien P., Wang F.S. PD-1 and PD-L1 up-regulation promotes CD8(+) T-cell apoptosis and postoperative recurrence in hepatocellular carcinoma patients. Int. J. Cancer. 2011; 128 (4): 887–896. DOI: 10.1002/ijc.25397.
31. Banerjee H., Kane L.P. Immune regulation by Tim-3.F1000Res. 2018; 7: 316. DOI: 10.12688/f1000research.13446.1.
32. Voron T., Colussi O., Marcheteau E., Pernot S., Nizard M., Pointet A., Latreche S., Bergaya S., Benhamouda N., Tanchot C., Stockmann C., Combe P., Berger A., Zinzindohoue F., Yagita H., Tartour E., Taieb J., Terme M. VEGF-A modulates expression of inhibitory checkpoints on CD8+ T cells in tumors. J. Exp. Med. 2015; 212 (2): 139–148. DOI: 10.1084/jem.20140559.
33. Laresgoiti-Servitje E. A leading role for the immune system in the pathophysiology of preeclampsia. J. Leukoc. Biol. 2013; 94 (2): 247–257. DOI: 10.1189/jlb.1112603.
34. Geldenhuys J., Rossouw T., Lombaard H., Ehlers M., Kock M. Disruption in the regulation of immune responses in the placental subtype of preeclampsia. Front Immunol. 2018; 9: 1659. DOI: 10.3389/fimmu.2018.01659.
Review
For citations:
Smetanenko E.A., Leplina O.Yu., Tikhonova M.A., Pasman N.M., Ostanin A.A., Chernykh E.R. Placental growth factor exerts modulatory effects on in vitro activated T cells. Bulletin of Siberian Medicine. 2020;19(4):158-166. https://doi.org/10.20538/1682-0363-2020-4-158-166