Preview

Bulletin of Siberian Medicine

Advanced search

Expression of pro-inflammatory and co-stimulatory molecules on the surface of macrophages in vitro in patients with pulmonary tuberculosis

https://doi.org/10.20538/1682-0363-2020-4-179-188

Abstract

The aim of this study was to identify features of the expression of pro-inflammatory and co-stimulatory molecules on the surface of macrophages in vitro in patients with pulmonary tuberculosis, depending on the clinical form of the disease and sensitivity of the pathogen to anti-TB drugs.

Materials and methods. 40 patients (36 men and 4 women) with pulmonary tuberculosis (TB) were examined: 18 patients (16 men and 2 women, average age (44.56 ± 8.10) years) with disseminated tuberculosis (DTB) and  22 patients (20 men and 2 women, average age (46.54 ± 5.24) years) with infiltrative tuberculosis (ITB). Of those, 30 patients secreted Mycobacterium tuberculosis (MBT) sensitive to the basic anti-TB drugs (ATBD), and 10 patients secreted MBT resistant to first-line anti-TB drugs. Venous blood was the study material. To isolate monocytes from the whole blood in order to transform them into macrophages, ficoll density gradient centrifugation with gradient density of 1.077 g/cm3 was used followed by immunomagnetic separation of CD14+ cells. Monocytes were cultured in a complete culture medium X-VIVO 10 with gentamicin and phenol red with the addition of the macrophage colony-stimulating factor (M-CSF) (5 ng/ml) at a concentration of 1×106 cells/ml with the following stimulators: interleukin (IL) 4 (10 ng/ml) and interferon (IFN) γ (100 ng/ml). Immunophenotyping of macrophages was performed using monoclonal antibodies to CD80, CD86, and HLA-DR on a Beckman Coulter CytoFLEX LX flow cytometer (Beckman Coulter, USA). The analysis of the obtained data was carried out using the CytExpert 2.0 software application. The results were analyzed using statistical methods.

Results. The number of intact and cytokine-stimulated (IL-4 and IFNγ) CD80-positive macrophages in patients with ITB and drug-resistant TB (DR TB) exceeded their number not only in healthy donors, but also in patients with DTB and drug-sensitive TB (DS TB), respectively. In addition, an increase in CD86 expression on the surface of macrophages was registered in patients with ITB and DR TB after adding IFNγ (M1-activation inducer) to the suspension culture. In contrast, in patients with DTB and DS TB, the number of macrophages with expression of B7 family co-stimulating molecules decreased or remained within the normal values in the absence of a reaction to cytokines during cytokine induction. Deficiency of HLA-DR-positive macrophages was found in all TB patients. The minimal number of macrophages expressing HLA-DR was found in patients with DTB and DS TB after cell incubation with IL-4 (M2-activation inducer).

Conclusion. Evaluation of the expression of B7 (CD80/86) and HLA-DR membrane molecules on macrophages in TB patients allows to conclude that anti-TB immune response is impaired at stages of antigen presentation (in all examined patients with TB) and co-stimulation (in DTB and DS TB). An increase in the expression of macrophage surface molecules CD80 (with M1- and M2-stimulation) and CD86 (with M1-stimulation) in patients with ITB and DR TB indicates an increase in cell reactivity in these forms of TB. In addition, deficit of expression of HLA-DR (a key marker of pro-inflammatory cell activation) on the surface of macrophages in TB can be considered as a general (independent of the clinical form of the disease and drug sensitivity of the pathogen) pathogenetic factor of immune imbalance in pulmonary tuberculosis.

About the Authors

E. G. Churina
Siberian State Medical University; National Research Tomsk State University
Russian Federation

2, Mosсow Trakt, Tomsk, 634050, Russian Federation

36, Lenina Av., Tomsk, 634050, Russian Federation

 



A. V. Sitnikova
Siberian State Medical University
Russian Federation
2, Mosсow Trakt, Tomsk, 634050, Russian Federation


O. I. Urazova
Siberian State Medical University; Tomsk State University of Control Systems and Radioelectronics
Russian Federation

2, Mosсow Trakt, Tomsk, 634050, Russian Federation

40, Lenina Av., Tomsk, 634050, Russian Federation



V. V. Novitskiy
Siberian State Medical University; Tomsk State University of Control Systems and Radioelectronics
Russian Federation

2, Mosсow Trakt, Tomsk, 634050, Russian Federation

40, Lenina Av., Tomsk, 634050, Russian Federation



M. R. Patysheva
National Research Tomsk State University; Cancer Research Institute, Tomsk National Research Medical Center, the Russian Academy of Sciences
Russian Federation

36, Lenina Av., Tomsk, 634050, Russian Federation

5, Kooperativny Str., Tomsk, 634009, Russian Federation

 



P. N. Golubchikov
Tomsk Phthisiopulmonological Medical Center
Russian Federation
17/1, R. Luksemburg Str., Tomsk, 634009, Russian Federation


E. P. Stepanova
Tomsk Phthisiopulmonological Medical Center
Russian Federation
17/1, R. Luksemburg Str., Tomsk, 634009, Russian Federation


References

1. Новицкий В.В., Уразова О.И., Стрелис А.К., Воронкова О.В., Филинюк О.В., Шилько Т.А. Патология иммунитета: причина или следствие туберкулезной инфекции? Бюллетень сибирской медицины. 2006; 5 (2): 70–74.

2. Murray P., Wynn T. Protective and pathogenic functions of macrophage subsets. Nat. Rev. Immunol. 2011; 11 (11): 723–737. DOI: 10.1038/nri3073.

3. Чурина Е.Г., Ситникова А.В., Уразова О.И., Чумакова С.П., Винс М.В., Береснева А.Е., Новицкий В.В. Макрофаги при бактериальных болезнях легких: фенотип и функции (обзор). Бюллетень сибирской медицины. 2019; 18 (1): 142–154. DOI: 10.20538/1682-0363-2019-1-142-154.

4. Swirski F.K., Nahrendorf M. Leukocyte behavior in atherosclerosis, myocardial infarction, and heart failure. Science. 2013; 339 (6116): 161–166. DOI: 10.1126/science.1230719.

5. Possamai L.A., Thursz M.R., Wendon J.A., Antoniades C.G. Modulation of monocyte/macrophage function: a therapeutic strategy in the treatment of acute liver failure. J. Hepatol. 2014; 61 (2): 439–445. DOI: 10.1016/j.jhep.2014.03.031.

6. Cassetta L., Cassol E., Poli G. Macrophage polarization in health and disease. Sci. World J. 2011; 11: 2391– 2402. DOI: 10.1100/2011/213962.

7. Hussell T., Bell T. Alveolar macrophages: plasticity in a tissue-specific context. Immunol. 2014; 14 (2): 81–93. DOI: 10.1038/nri3600.

8. Hoeffel G., Ginhoux F. Ontogeny of tissue-resident macrophages. Immunology. 2015; 6: 486. DOI: 10.3389/fimmu.2015.00486.

9. Schenk M., Fabri M., Krutzik S.R., Lee D.J., Vu D.M., Sieling P.A., Montoya D., Liu P.T., Modlin R.L. Interleukin- 1β triggers the differentiation of macrophages with enhanced capacity to present mycobacterial antigen to T cells. Immunology. 2014; 141 (2): 174–180. DOI: 10.1111/imm.12167.

10. Gordon S., Martinez F.O. Alternative activation of macrophages: mechanism and functions. Immunity. 2010; 32 (5): 593–604. DOI: 10.1016/j.immuni.2010.05.007.

11. Martinez F.O., Sica A., Mantovani A., Locati M. Macrophage activation and polarization. Front. Biosci. 2008; 1 (13): 453–461. DOI: 10.2741/2692.

12. Peyravian N., Gharib E., Moradi A., Mobahat M., Tarban P., Azimzadeh P., Nazemalhosseini-Mojarad E., Asadzadeh Aghdaei H. Evaluating the expression level of co-stimulatory molecules CD 80 and CD 86 in different types of colon polyps. Curr. Res. Transl. Med. 2018; 66 (1): 19–25. DOI: 10.1016/j.retram.2017.11.003.

13. Owen J., Punt J., Stranford S., Jones P., Kuby J. Kuby Immunology. New York: W.H. Freeman & Co., 2013: 574.

14. Scarpa M., Brun P., Scarpa M., Morgan S., Porzionato A., Kotsafti A., Bortolami M., Buda A., D’Incà R., Macchi V.,

15. Sturniolo G.C., Rugge M., Bardini R., Castagliuolo J., Angriman I., Castoro C. CD80-CD28 signaling controls the progression of inflammatory colorectal carcinogenesis. Oncotarget. 2015; 6 (24): 20058–20069. DOI: 10.18632/oncotarget.2780.

16. Ganesan A., Moon T.C., Barakat K.H. Revealing the atomistic details behind the binding of B7–1 to CD28 and CTLA-4: A comprehensive protein-protein modelling study. Biochimica et Biophysica Acta (BBA). 2018; 1862 (12): 2764–2778. DOI: 10.1016/j.bbagen.2018.08.010.

17. Wang L.X., Mei Z.Y., Zhou J.H., Yao Y.S., Li Y.H., Xu Y.H., Li J.X., Gao X.N., Zhou M.H., Jiang M.M., Gao L., Ding Y., Lu X.C. Low dose decitabine treatment induces CD80 expression in cancer cells and stimulates tumor specific cytotoxic T lymphocyte responses. PLoS One. 2013; 8 (5): е62924. DOI: 10.1371/journal.pone.0062924.

18. Urazova O.I., Churina E.G., Hasanova R.R., Novitskiy V.V., Poletika V.S. Association between polymorphisms of cytokine genes and secretion of IL-12p70, IL-18, and IL-27 by dendritic cells in patients with pulmonary tuberculosis. Tuberculosis. 2019; 115: 56–62. DOI: 10.1016/j.tube.2019.

19. 003.

20. Zhuang Y., Peng H., Chen Y., Zhou S., Chen Y. Dynamic monitoring of monocyte HLA-DR expression for the diagnosis, prognosis, and prediction of sepsis. Front. Biosci. (Landmark Ed). 2017; 22: 1344–1354. DOI: 10.2741/4547.

21. Venet F., Lukaszewicz A.C., Payen D., Hotchkiss R., Monneret G. Monitoring the immune response in sepsis: a rational approach to administration of immunoadjuvant therapies. Curr. Opin. Immunol. 2013; 25 (4): 477–483. DOI: 10.1016/j.coi.2013.05.006.

22. Monneret G.,Venet F.,Pachot A., Lepape A. Monitoring immune dysfunctions in the septic patient: a new skin for the old ceremony. Mol. Med. 2008; 14 (1-2): 64–78. DOI: 10.2119/2007-00102.

23. Monneret G., Lepape A.,Voirin N., Bohe J.,Venet F., Debard A.L. Persisting low monocyte human leukocyte antigen-DR expression predicts mortality in septic shock. Intensive Care Med. 2006; 32 (8): 1175–1183. DOI: 10.1007/s00134-006-0204-8.

24. Grimaldi D., Louis S., Pène F., Sirgo G., Rousseau C., Claessens Y. E., Vimeux L., Cariou A., Mira J. P., Hosmalin A., Chiche J.D. Profound and рersistent decrease of circulating dendritic cells is associated with ICU-acquired infection in patients with septic shock intensive care. Med. 2011; 37 (9): 1438–1446. DOI: 10.1007/s00134-011-2306-1.


Review

For citations:


Churina E.G., Sitnikova A.V., Urazova O.I., Novitskiy V.V., Patysheva M.R., Golubchikov P.N., Stepanova E.P. Expression of pro-inflammatory and co-stimulatory molecules on the surface of macrophages in vitro in patients with pulmonary tuberculosis. Bulletin of Siberian Medicine. 2020;19(4):179-188. https://doi.org/10.20538/1682-0363-2020-4-179-188

Views: 979


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1682-0363 (Print)
ISSN 1819-3684 (Online)