Preview

Bulletin of Siberian Medicine

Advanced search

Barrett’s esophagus and esophageal adenocarcinoma: biomarkers of proliferation, apoptosis, autophagy and angiogenesis

https://doi.org/10.20538/1682-0363-2020-4-226-234

Abstract

Aim: analysis of all known markers of proliferation, apoptosis, autophagy and angiogenesis in the pathogenesis of Barrett’s esophagus and esophageal adenocarcinoma with the purpose of improvement of diagnostics and  treatment quality.

Materials and methods. Analysis of the available scientific sources by Russian and foreign authors.

Results. Data on all the known markers has been structured and is supposed to be integrated into clinical practice in the diagnosis and treatment of Barrett’s esophagus and esophageal adenocarcinoma at various stages  of disease development. 

About the Authors

E. S. Petenyova
Federal Siberian Research Clinical Center
Russian Federation
26, Kolomenskaya Str., Krasnoyarsk, 660037, Russian Federation


A. B. Salmina
Krasnoyarsk State Medical University named after Prof. V.F. Voino-Yasenetsky
Russian Federation
1, Partizana Zheleznyaka Str., Krasnoyarsk, 660022, Russian Federation


S. I. Berdnikov
Federal Siberian Research Clinical Center
Russian Federation
26, Kolomenskaya Str., Krasnoyarsk, 660037, Russian Federation


V. V. Salmin
Krasnoyarsk State Medical University named after Prof. V.F. Voino-Yasenetsky
Russian Federation
1, Partizana Zheleznyaka Str., Krasnoyarsk, 660022, Russian Federation


V. G. Abramov
Federal Siberian Research Clinical Center
Russian Federation
26, Kolomenskaya Str., Krasnoyarsk, 660037, Russian Federation


N. N. Medvedeva
Krasnoyarsk State Medical University named after Prof. V.F. Voino-Yasenetsky
Russian Federation
1, Partizana Zheleznyaka Str., Krasnoyarsk, 660022, Russian Federation


E. V. Semichev
Federal Siberian Research Clinical Center
Russian Federation
26, Kolomenskaya Str., Krasnoyarsk, 660037, Russian Federation


References

1. Вахлюева О.Г. Клинико-диагностические критерии пищевода Барретта и аденокарциномы пищевода. Бюллетень медицинских интернет-конференций. 2013; 3 (3): 517−519.

2. Ahmad J., Arthur K., Maxwell P., Kennedy A., Johnston B.T., Murray L., McManus D.T. A cross sectional study of p504s, CD133, and Twist expression in the esophageal metaplasia dysplasia adenocarcinoma sequence. Dis. Esophagus. 2015; 28 (3): 276−282. DOI: 10.1111/dote.12181.

3. Пирогов С.С., Карселадзе А.И. Молекулярно-генетические исследования в диагностике и оценке неопластической прогрессии пищевода Барретта (обзор). Сибирский онкологический журнал. 2008; 1: 85−94.

4. Тер-Ованесов М.Д. Пищевод Барретта: этиология, патогенез, современные подходы к лечению (обзор). Медицинский альманах. 2011; 5: 41−48.

5. Zali M.R., Zadeh-Esmaeel M.M., Rezaei-Tavirani M., Tabatabaei S.E., Ahmadi A.N. Barrett’s esophagus transits to a cancer condition via potential biomarkers. Gastroenterol. Hepatol. Bed. Bench. 2018; 11 (Suppl. 1): S80−S84.

6. Коломацкая П.Б. Пищевод Барретта. Эпидемиология, экология, патогенез, морфологическая характеристика, возможности эндоскопической диагностики. Литературный обзор. Вестник Российского научного центра рентгенорадиологии Минздрава России. 2011; 11 (4): 212−229.

7. Wu J., Ding J., Yang J., Guo X., Zheng Y. MicroRNA roles in the nuclear factor kappa B signaling pathway in cancer. Front. Immunol. 2018; 9: 546. DOI: 10.3389/fimmu.2018.00546.

8. Reid B.J., Li X., Galipeau P.C., Vaughan T.L. Barrett’s oesophagus and oesophageal adenocarcinoma: time for a new synthesis. Nat. Rev. Cancer. 2010; 10 (2): 87−101. DOI: 10.1038/nrc2773.

9. Götzel K., Chemnitzer O., Maurer L., Dietrich A., Eichfeld U., Lyros O., Moulla Y., Niebisch S., Mehdorn M., Jansen-Winkeln B., Vieth M., Hoffmeister A., Gockel I., Thieme R. Indepth characterization of the Wnt-signaling/β-catenin pathway in an in vitro model of Barrett’s sequence. BMC Gastroenterol. 2019; 19 (1): 38. DOI: 10.1186/s12876-019-0957-5.

10. Hashimoto N. Expression of COX2 and p53 in rat esophageal cancer induced by reflux of duodenal contents. ISRN Gastroenterol. 2012; 2012: 914824. DOI: 10.5402/2012/914824.

11. Dzinic S.H., Mahdi Z., Bernardo M.M., Vranic S., Beydoun H., Nahra N., Alijagic A., Harajli D., Pang A., Saliganan D.M., Rahman A.M., Skenderi F., Hasanbegovic B., Dyson G., Beydoun R., Sheng S. Maspin differential expression patterns as a potential marker for targeted screening of esophageal adenocarcinoma/gastroesophageal junction adenocarcinoma. PloS One. 2019; 14 (4): e0215089. DOI: 10.1371/journal.pone.0215089.

12. Zhou Z., Lu H., Zhu S., Gomaa A., Chen Z., Yan J., Washington K., El-Rifai W., Dang C., Peng D. Activation of EGFRDNA-PKcs pathway by IGFBP2 protects esophageal adenocarcinoma cells from acidic bile salts-induced DNA damage. J. Exp. Clin. Cancer Res. 2019; 38 (1): 13. DOI: 10.1186/s13046-018-1021-y.

13. Goodarzi M., Correa A.M., Ajani J.A., Swisher S.G., Hofstetter W.L., Guha S., Deavers M.T., Rashid A., Maru D.M. Anti-phosphorylated histone H3 expression in Barrett’s

14. esophagus, low-grade dysplasia, high-grade dysplasia, and adenocarcinoma. Mod. Pathol. 2009; 22 (12): 1612−1621. DOI: 10.1038/modpathol.2009.133.

15. Gan W., Zhang C., Siu K.Y., Satoh A., Tanner J.A., Yu S. ULK1 phosphorylates Sec23A and mediates autophagy-induced inhibition of ER-to-Golgi traffic. BMC Cell Biol. 2017; 18 (1): 22. DOI: 10.1186/s12860-017-0138-8.

16. Keown J.R., Black M.M., Ferron A., Yap M., Barnett M.J., Pearce F.G., Stoye J.P., Goldstone D.C. A helical LC3-interacting region mediates the interaction between the retroviral restriction factor Trim5α and mammalian autophagy-related ATG8 proteins. J. Biol. Chem. 2018; 293 (47): 18378−18386. DOI: 10.1074/jbc.RA118.004202.

17. Li S., Jang G.B., Quach C., Liang C. Darkening with UVRAG. Autophagy. 2019; 15 (2): 366−367. DOI: 10.1080/15548627.2018.1522911.

18. Agarwal A., Polineni R., Hussein Z., Vigoda I., Bhagat T.D., Bhattacharyya S., Maitra A., Verma A. Role of epigenetic alterations in the pathogenesis of Barrett’s esophagus and esophageal adenocarcinoma. Int. J. Clin. Exp. Pathol. 2012; 5 (5): 382−396.

19. Kaz A.M., Grady W.M., Stachler M.D., Bass .A.J. Genetic and epigenetic alterations in Barrett’s esophagus and esophageal adenocarcinoma. Gastroenterol. Clin. North Am. 2015; 44 (2): 473−489. DOI: 10.1016/j.gtc.2015.02.015.

20. Luebeck E.G., Curtius K., Hazelton W.D., Maden S., Yu M., Thota P.N., Patil D.T., Chak A., Willis J.E., Grady W.M. Identification of a key role of widespread epigenetic drift in Barrett’s esophagus and esophageal adenocarcinoma. Clin. Epigenetics. 2017; 9 (1): 113. DOI: 10.1186/s13148-017- 0409-4.

21. Nieto T., Tomlinson C.L., Dretzke J., Bayliss S., Price M.J., Dilworth M., Beggs A.D., Tucker O. A systematic review of epigenetic biomarkers in progression from non-dysplastic Barrett’s oesophagus to oesophageal adenocarcinoma. BMJ Open. 2018; 8 (6): e020427. DOI: 10.1136/bmjopen-2017-020427.

22. Butt M.A., Pye H., Haidry R.J., Oukrif D., Khan S.U., Puccio I., Gandy M., Reinert H.W., Bloom E., Rashid M., Yahioglu G., Deonarain M.P., Hamoudi R., Rodriguez-Justo M., Novelli M.R., Lovat L.B. Upregulation of mucin glycoprotein MUC1 in the progression to esophageal adenocarcinoma and therapeutic potential with a targeted photoactive antibody-drug conjugate. Oncotarget. 2017; 8 (15): 25080−25096. DOI: 10.18632/oncotarget.15340.

23. Sobecki M., Mrouj K., Camasses A., Parisis N., Nicolas E., Llères D., Gerbe F., Prieto S., Krasinska L., David A., Eguren M., Birling M.C., Urbach S., Hem S., Déjardin J., Malumbres M., Jay P., Dulic V., Lafontaine D.Lj., Feil R., Fisher D. The cell proliferation antigen Ki-67 organises heterochromatin. Elife. 2016; 5: e13722. DOI: 10.7554/eLife.13722.

24. Sun X., Bizhanova A., Matheson T.D., Yu J., Zhu L.J., Kaufman P.D. Ki-67 contributes to normal cell cycle progression and inactive X heterochromatin in p21 checkpoint-proficient human cells. Mol. Cell. Biol. 2017; 37 (17): e00569-16. DOI: 10.1128/MCB.00569-16.

25. Roy J., Putt K.S., Coppola D., Leon M.E., Khalil F.K., Centeno B.A., Clark N., Stark V.E., Morse D.L., Low P.S. Assessment of cholecystokinin 2 receptor (CCK2R) in neoplastic tissue. Oncotarget. 2016; 7 (12): 14605−14615. DOI: 10.18632/oncotarget.7522.

26. Jin E.H., Lee S.I., Kim J., Seo E.Y., Lee S.Y., Hur G.M., Shin S., Hong J.H. Association between promoter polymorphisms of TFF1, TFF2, and TFF3 and the risk of gastric and diffuse gastric cancers in a Korean population. J. Korean Med. Sci. 2015; 30 (8): 1035−1041. DOI: 10.3346/jkms.2015.30.8.1035.

27. Grzanka D., Kowalczyk A.E., Izdebska M., Klimaszewska-Wisniewska A., Gagat M. The interactions between SATB1 and F-actin are important for mechanisms of active cell death. Folia Histochem. Cytobiol. 2015; 53 (2): 152−161. DOI: 10.5603/fhc.a2015.0018.

28. Sunkara K.P., Gupta G., Hansbro P.M., Dua K., Bebawy M. Functional relevance of SATB1 in immune regulation and tumorigenesis. Biomed. Pharmacother. 2018; 104: 87−93. DOI: 10.1016/j.biopha.2018.05.045.

29. Wang S., Zeng J., Xiao R., Xu G., Liu G., Xiong D., Ye Y., Chen B., Wang H., Luo Q., Huang Z. Poor prognosis and SATB1 overexpression in solid tumors: a meta-analysis. Cancer Manag Res. 2018; 10: 1471−1478. DOI: 10.2147/CMAR.S165497.

30. Grady W.M., Yu M. Molecular evolution of metaplasia to adenocarcinoma in the esophagus. Dig. Dis. Sci. 2018; 63 (8): 2059−2069. DOI: 10.1007/s10620-018-5090-8.

31. Duits L.C., Lao-Sirieix P., Wolf W.A., O’Donovan M., Galeano-Dalmau N., Meijer S.L., Offerhaus G.J.A., Redman J., Crawte J., Zeki S., Pouw R.E., Chak A., Shaheen N.J., Bergman J.J.G.H.M., Fitzgerald R.C. A biomarker panel predicts progression of Barrett’s esophagus to esophageal adenocarcinoma. Dis. Esophagus. 2018; 32 (1): 102. DOI: 10.1093/dote/doy102.

32. Hashimoto N. Expression of COX2 and p53 in rat esophageal cancer induced by reflux of duodenal contents. ISRN Gastroenterol. 2012; 2012: 914824. DOI: 10.5402/2012/914824.

33. Clemons N.J., Phillips W.A., Lord R.V. Signaling pathways in the molecular pathogenesis of adenocarcinomas of the esophagus and gastroesophageal junction. Cancer Biol. Ther. 2013; 14 (9): 782−795. DOI: 10.4161/cbt.25362.

34. Wu J., Ding J., Yang J., Guo X., Zheng Y. MicroRNA roles in the nuclear factor kappa B signaling pathway in cancer. Front. Immunol. 2018; 9: 546. DOI: 10.3389/fimmu.2018.00546.

35. Gauthé M., Richard-Molard M., Rigault E., Buecher B., Mariani P., Bellet D., Cacheux W., Lièvre A. Prognostic value of serum CYFRA 21-1 1 in patients with anal canal squamous cell carcinoma treated with radio (chemo) therapy. BMC Cancer. 2018; 18 (1): 417. DOI: 10.1186/s12885-018-4335-4.

36. Wang J., Deng L., Huang J., Cai R., Zhu X., Liu F., Wang Q., Zhang J., Zheng Y. High expression of Fibronectin 1 suppresses apoptosis through the NF-κB pathway and is associated with migration in nasopharyngeal carcinoma. Am. J. Transl. Res. 2017; 9 (10): 4502−4511.

37. Howard J.M., Pidgeon G.P., Reynolds J.V. Лептин и злокачественные опухоли желудочно-кишечного тракта. Ожирение и метаболизм. 2011; 8 (2): 69−70.

38. Johnson D.R., Abdelbaqui M., Tahmasbi M., Mayer Z., Lee H.W., Malafa M.P., Coppola D. CDX2 protein expression compared to alcian blue staining in the evaluation of esophageal intestinal metaplasia. World J. Gastroenterol. 2015; 21 (9): 2770−2776. DOI: 10.3748/wjg.v21.i9.2770.

39. Rahimi N. VEGFR-1 and VEGFR-2: two non-identical twins with a unique physiognomy. Front. Biosci. 2006; 11: 818−829. DOI: 10.2741/1839.

40. Nieto T., Tomlinson C.L., Dretzke J., Bayliss S., Price M.J., Dilworth M., Beggs A.D., Tucker O. A systematic review of epigenetic biomarkers in progression from non-dysplastic Barrett’s oesophagus to oesophageal adenocarcinoma. BMJ Open. 2018; 8 (6): e020427. DOI: 10.1136/bmjopen-2017-020427.

41. Yang Y., He S., Wang Q., Li F., Kwak M.J., Chen S., O’Connell D., Zhang T., Pirooz S.D., Jeon Y.H., Chimge N.O., Frenkel B., Choi Y., Aldrovandi G.M., Oh B.H., Yuan Z., Liang C. Autophagic UVRAG promotes UV-induced photolesion repair by activation of the CRL4DDB2 E3 ligase. Mol. Cell. 2016; 62 (4): 507−519. DOI: 10.1016/j.molcel.2016.04.014.

42. Gan W., Zhang C., Siu K.Y., Satoh A., Tanner J.A., Yu S. ULK1 phosphorylates Sec23A and mediates autophagy-induced inhibition of ER-to-Golgi traffic. BMC Cell Biol. 2017; 18 (1): 22. DOI: 10.1186/s12860-017-0138-8.

43. Jeon P., Park J.H., Jun Y.W., Lee Y.K., Jang D.J., Lee J.A. Development of GABARAP family protein-sensitive LIRbased probes for neuronal autophagy. Mol. Brain. 2019; 12 (1): 33. DOI: 10.1186/s13041-019-0458-z.

44. Kauffman K.J., Yu S., Jin J., Mugo B., Nguyen N., O’Brien A., Nag S., Lystad A.H., Melia T.J. Delipidation of mammalian Atg8-family proteins by each of the four ATG4 proteases. Autophagy. 2018; 14 (6): 992−1010. DOI: 10.1080/15548627.2018.1437341.

45. Simons I.M., Mohrlüder J., Feederle R., Kremmer E., Zobel T., Dobner J., Bleffert N., Hoffmann S., Willbold D. The highly GABARAP specific rat monoclonal antibody 8H5 visualizes GABARAP in immunofluorescence imaging at endogenous levels. Sci. Rep. 2019; 9 (1): 526. DOI: 10.1038/s41598-018-36717-1.

46. Pyo K.E., Kim C.R., Lee M., Kim J.S., Kim K.I., Baek S.H. ULK1 O-GlcNAcylation is crucial for activating VPS34 via ATG14L during autophagy initiation. Cell Rep. 2018; 25 (10): 2878−2890. DOI: 10.1016/j.celrep.2018.11.042.

47. He S., Liang C. Frameshift mutation of UVRAG: Switching a tumor suppressor to an oncogene in colorectal

48. cancer. Autophagy. 2015; 11 (10): 1939−1940. DOI: 10.1080/15548627.2015.1086523.

49. Kimos M.C., Wang S., Borkowski A., Yang G.Y., Yang C.S., Perry K., Olaru A., Deacu E., Sterian A., Cottrell J., Papadimitriou J., Sisodia L., Selaru F.M., Mori Y., Xu Y., Yin J., Abraham J.M., Meltzer S.J. Esophagin and proliferating cell nuclear antigen (PCNA) are biomarkers of human esophageal neoplastic progression. Int. J. Cancer. 2004; 111 (3): 415−417. DOI: 10.1002/ijc.20267.


Review

For citations:


Petenyova E.S., Salmina A.B., Berdnikov S.I., Salmin V.V., Abramov V.G., Medvedeva N.N., Semichev E.V. Barrett’s esophagus and esophageal adenocarcinoma: biomarkers of proliferation, apoptosis, autophagy and angiogenesis. Bulletin of Siberian Medicine. 2020;19(4):226-234. https://doi.org/10.20538/1682-0363-2020-4-226-234

Views: 760


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1682-0363 (Print)
ISSN 1819-3684 (Online)