Possibilities of radionuclide diagnostics of Her2-positive breast cancer using technetium-99m-labeled target molecules: the first experience of clinical use
https://doi.org/10.20538/1682-0363-2021-1-23-30
Abstract
Background. The main purpose of the Her2/neu status determination in clinical practice is to determine the indications for the appointment of targeted therapy. The main methods for detecting the Her2/neu status are the immunohistochemical method (IHC) and the fluorescence in situ hybridization (FISH); however, despite their widespread use, they have a number of significant disadvantages. Over the past few years, radionuclide diagnostics using a new class of alternative scaffold proteins that meet all the requirements for optimal delivery of radionuclides to tumor cells has become widespread.
Aim. To study the possibility of clinical use of a radiopharmaceutical based on technetium-99m-labeled target molecules for the diagnosis of breast cancer with the Her2/neu overexpression in humans.
Materials and methods. The study included 11 patients with breast cancer (T1–4N0–2M0) before systemic therapy: 5 with Her2/neu overexpression; expression of the marker was not detected in 6. In all cases, morphological
and immunohistochemical studies were performed. In case of Her2/neu 2+, FISH analysis was performed. The radiopharmaceutical was prepared immediately before administration, after which it was slowly injected intravenously into the patient. Scintigraphic studies in the “WholeBody” mode and SPECT of the chest organs were performed 2, 4, 6 and 24 hours after injection.
Results. Radiochemical yield, radiochemical purity and activity before administration were (80 ± 4)%, (98 ± 1)% and (434 ± 19.5) MBq, respectively. The greatest uptake by normal organs was observed at a time interval of 6 hours in the kidneys and at a moderate activity in the liver and lungs at the same time interval. The organ with the highest absorbed dose was the kidneys; significant accumulation was also detected in the adrenal glands, gallbladder, liver, pancreas and spleen. The smallest accu mulation of the studied drug was observed in the brain (0.001 ± 0.000) mGy and skin (0.001 ± 0.000) mGy. The effective dose was (0.009 ± 0.002) mGy. The difference between tumors with positive and negative Her2-neu expression was found at all time points. In this case, the best indicator was determined after 2 hours of drug injection (р < 0.05).
Conclusion. Based on the results obtained, it can be indicated that the investigated radiopharmaceutical can be considered as a new additional method for the diagnosis of Her2-positive breast tumors.
About the Authors
O. D. BraginaRussian Federation
5, Kooperativny Str., Tomsk, 634009, Russian Federation
30, Lenina Av., 634050, Tomsk, Russian Federation
V. I. Chernov
Russian Federation
5, Kooperativny Str., Tomsk, 634009, Russian Federation
30, Lenina Av., 634050, Tomsk, Russian Federation
E. Yu. Garbukov
Russian Federation
5, Kooperativny Str., Tomsk, 634009, Russian Federation
A. V. Doroshenko
Russian Federation
5, Kooperativny Str., Tomsk, 634009, Russian Federation
A. G. Vorobyeva
Russian Federation
30, Lenina Av., 634050, Tomsk, Russian Federation
7, Dag Hammarskjölds väg, Segerstedthuset, Uppsala, 75237, Sweden
A. M. Orlova
Russian Federation
30, Lenina Av., 634050, Tomsk, Russian Federation
7, Dag Hammarskjölds väg, Segerstedthuset, Uppsala, 75237, Sweden
V. M. Tolmachev
Russian Federation
30, Lenina Av., 634050, Tomsk, Russian Federation
7, Dag Hammarskjölds väg, Segerstedthuset, Uppsala, 75237, Sweden
References
1. Gebhart G., Lamberts L.E., Wimana Z., Garcia C., Emonts P., Ameye L., Stroobants S., Huizing M., Aftimos P., Tol J., Oyen W.J.G., Vugts D.J., Hoekstra O.S., Schröder C.P., Menke-van der Houven van Oordt C.W., Guiot T., Brouwers A.H., Awada A., de Vries E.G.E., Flamen P. Molecular imaging as a tool to investigate heterogeneity of advanced HER2-positive breast cancer and to predict patient outcome under trastuzumab emtansine (T-DM1): the ZEPHIR trial. Ann. Oncol. 2016; 27 (4): 619–624. DOI: 10.1093/annonc/mdv577.
2. Bartley A.N., Washington M.K., Ventura C.B., Ismaila N., Colasacco C., Benson 3rd A.B., Carrato A., Gulley M.L., Jain D., Kakar S., Mackay H.J., Streutker C., Tang L., Troxell M., Ajani J.A. HER2 testing and clinical decision making in gastroesophageal adenocarcinoma: guideline grom the College of American Pathologists, American Society for Clinical Pathology, and the American Society of Clinical Oncology. J. Clin. Oncol. 2017; 35 (4): 446–464. DOI: 10.1200/JCO.2016.69.4836.
3. Tolmachev V. Imaging of HER-2 overexpression in tumors for guiding therapy. Curr. Pharm. Des. 2008; 14 (28): 2999–3019. DOI: 10.2174/138161208786404290.
4. Zavyalova M., Vtorushin S.V., Telegina N., Krakhmal N., Savelieva O., Tashireva L., Bragina O., Denisov E.V., Kaigorodova E.V., Slonimskaya E., Choynzonov E.L., Perelmuter V.M. Clinicopathological features of nonspecific invasive breast cancer according to its molecular subtypes. Experimental Oncology. 2016: 38 (2): 122–127.
5. Wolff A.C., Hammond M.E.H., Hicks D.G., Dowsett M., McShane L.M., Allison K.H., Allred D.C., Bartlett J.M.S., Bilous M., Fitzgibbons P., Hanna W., Jenkins R.B., Mangu P.B., Paik S., Perez E.A., Press M.F., Spears P.A., Vance G.H., Viale G., Hayes D.F. Recommendations for human epidermal growth factor receptor 2 testing in breast cancer: American Society of Clinical Oncology/College of American Pathologists clinical practice guideline update. J. Clin. Oncol. 2013; 31 (31): 3997–4013. DOI: 10.1200/JCO.2013.50.9984.
6. Zelchan R., Chernov V., Medvedeva A., Sinilkin I., Stasyuk E., Rogov A., Il’ina E., Skuridin V., Bragina O. Study of a Glucose Derivative Labeled with Technicium-99m as a potential radiopharmaceutical for cancer diagnosis. European Journal of Nuclear Imaging. 2016; 43: 466–466. DOI: 10.1063/1.4960291.
7. Брагина О.Д., Чернов В.И., Зельчан Р.В., Синилкин И.Г., Медведева А.А., Ларкина М.С. Альтернативные каркасные белки в радионуклидной диагностике злокачественных образований. Бюллетень сибирской медицины. 2019; 18 (3): 125–133. DOI: 10.20538/1682-0363-2019-3-125-133.
8. Azhar A., Ahmad E., Zia Q., Rauf M.A., Owais M., Ashraf G.M. Recent advances in the development of novel protein scaffolds based therapeutics. International Journal of Biological Macromolecules. 2017; 102: 630–641. DOI: 10.1016/j.ijbiomac.2017.04.045.
9. Брагина О.Д., Ларькина М.С., Стасюк Е.С., Чернов В.И., Юсубов М.С.О., Скуридин В.С., Деев С.М., Зельчан Р.В., Булдаков М.А., Подрезова Е.В., Белоусов М.В. Разработка высокоспецифического радиохимического соединения на основе меченных 99mTc рекомбинантных адресных молекул для визуализации клеток с гиперэкспрессией Her2/neu. Бюллетень сибирской медицины. 2017; 16 (3): 25–33. DOI: 10.20538/1682-0363-2017-3-25–33.
10. Skuridin V., Stasyuk E., Bragina O., Usubov M., Chernov V., Larkina M., Zelchan R., Rogov A., Sinilkin I., Larionova L. Development of radiopharmaceutical based on mini-antibody for early cancer detection. European Journal of Nuclear Medicine and Molecular Imaging. 2016; 43 (1): 465.
11. Vorobyeva A., Schulga A., Konovalova E., Güler R., Löfblom J., Sandström M., Garousi J., Chernov V., Bragina O., Orlova A., Tolmachev V., Deyev S. Optimal composition and position of histidine-containing tags improves biodistribution of 99mTc-labeled DARPin G3. Scientific Reports. 2019; 9 (1): 9405. DOI: 10.1038/s41598-019-45795-8.
12. Чернов В.И., Медведева А.А., Синилкин И.Г., Зельчан Р.В., Брагина О.Д., Чойнзонов Е.Ц. Ядерная медицина в диагностике и адресной терапии злокачественных образований. Бюллетень сибирской медицины. 2018; 17 (1): 220–231. DOI: 10.20538/1682-0363-2018-1-220-231.
13. Tolmachev V., Orlova A., Andersson K. Methods for radiolabelling of monoclonal antibodies. Methods Mol. Biol. 2014; 1060: 309–330. DOI: 10.1007/978-1-62703-586-6_16.
14. Krasniqi A., D’Huyvetter M., Devoogdt N., Frejd F.Y., Sorensen J., Orlova A., Keyaerts M., Tolmachev V. Same-day imaging using small proteins: clinical experience and translational prospects in oncology. Journal of Nuclear Medicine. 2018; 59 (6): 885–891. DOI: 10.2967/jnumed.117.199901.
15. Simeon R., Chen Z. In vitro-engineered non-antibody protein therapeutics. Protein Cell. 2018; 9 (1): 3–14. DOI: 10.1007/s13238-017-0386-6.
16. Garousi J., Lindbo S., Nilvebrant J., Åstrand M., Buijs J., Sandström M., Honarvar H., Orlova A., Tolmachev V., Hober S. ADAPT, a novel scaffold Protein-based probe for radionuclide imaging of molecular targets that are expressed in disseminated cancers. Cancer Res. 2015; 75 (20): 4364–4371. DOI: 10.1158/0008-5472.CAN-14-3497.
17. Lindbo S., Garousi J., Åstrand M., Honarvar H., Orlova A., Hober S., Tolmachev V. Influence of histidine-containing tags on the biodistribution of ADAPT scaffold proteins. Bioconjug. Chem. 2016; 27 (3): 716–726. DOI: 10.1021/acs.bioconjchem.5b00677
18. Bragina O., Witting E., Garousi J., Zelchan R., Sandström M., Medvedeva A., Orlova A., Doroshenko A., Vorobyeva A., Lindbo S., Borin J., Tarabanovskaya N., Sorensen J., Hober S., Chernov V., Tolmachev V. Phase I study of 99mTc-ADAPT6, a scaffold protein-based probe for visualization of HER2 expression in breast cancer. J. Nucl. Med. 2021; 62 (1). DOI: 10.2967/jnumed.120.248799.
19. Sandström M., Lindskog K., Velikyan I., Wennborg A., Feldwisch J., Sandberg D., Tolmachev V., Orlova A., Sörensen J., Carlsson J., Lindman H., Lubberink M. Biodistribution and radiation dosimetry of the anti-HER2 Affibody molecule 68GaABY-025 in breast cancer patients. J. Nucl. Med. 2016; 57 (6): 867–871. DOI: 10.2967/jnumed.115.169342.
20. Sörensen J., Velikyan I., Sandberg D., Wennborg A., Feldwisch J., Tolmachev V., Orlova A., Sandström M., Lubberink M., Olofsson H., Carlsson J., Lindman H. Measuring HER2-receptor expression in metastatic breast cancer using [68Ga]ABY-025 affibody PET/CT. Theranostics. 2016; 6 (2): 262–271. DOI: 10.7150/thno.13502.
21. Keyaerts M., Xavier C., Heemskerk J., Devoogdt N., Everaert H., Ackaert C., Vanhoeij M., Duhoux F.P., Gevaert T., Simon P., Schallier D., Fontaine C., Vaneycken I., Vanhove C., De Greve J., Lamote J., Caveliers V., Lahoutte T. Phase I study of 68Ga-HER2-nanobody for PET/CT assessment of HER2 expression in breast carcinoma. J. Nucl. Med. 2016; 57 (1): 27–33. DOI: 10.2967/jnumed.115.162024.
22. Sörensen J., Velikyan I., Sandberg D., Wennborg A., Feldwisch J., Tolmachev V., Orlova A., Sandström M., Lubberink M., Olofsson H., Carlsson J., Lindman H. Measuring HER2-receptor expression in metastatic breast cancer using [68Ga]ABY-025 Affibody PET/CT. Theranostics. 2016; 6:262–271. DOI: 10.7150/thno.13502.
23. Keyaerts M., Xavier C., Heemskerk J., Devoogdt N., Everaert H., Ackaert C., Vanhoeij M., Duhoux F. P., Gevaert T., Simon P., Schallier D., Fontaine C., Vaneycken I., Vanhove C., De Greve J., Lamote J., Caveliers V., Lahoutte T. Phase I study of 68Ga-HER2-nanobody for PET/CT assessment of HER2 expression in breast carcinoma. J. Nucl. Med. 2016; 57: 27–33. DOI: 10.2967/jnumed.115.162024.
Review
For citations:
Bragina O.D., Chernov V.I., Garbukov E.Yu., Doroshenko A.V., Vorobyeva A.G., Orlova A.M., Tolmachev V.M. Possibilities of radionuclide diagnostics of Her2-positive breast cancer using technetium-99m-labeled target molecules: the first experience of clinical use. Bulletin of Siberian Medicine. 2021;20(1):23-30. https://doi.org/10.20538/1682-0363-2021-1-23-30