Effect of physical load on the concentration of endothelial NO-synthase and platelet-activation factor in plasma of athletes
https://doi.org/10.20538/1682-0363-2021-1-45-49
Abstract
Aim. To assess the effect of a single physical activity on the concentration of endothelial NO-synthase and plateletactivating factor in blood plasma of athletes training in cyclic and strength sports, as well as in untrained volunteers.
Materials and methods. The study involved 28 men aged 18–25 years, who were relatively healthy and had no disorders of the cardiovascular system. Three groups were formed according to the sports classification. Group 1 (TFG): highly qualified athletes (Candidates for Master of Sports (CMS), Master of Sports (MS)) of cyclic sports – track and field athletics (middle-distance running, 800–1500 m), n = 10. Group 2 (WG): highly qualified athletes (CMS, MS) of strength sports – weightlifting, n = 8. Group 3 (CG): control group – untrained men with no sports category, n = 10. All volunteers were examined in the morning on an empty stomach. One day before the study, the athletes were advised to stop the training process. The blood from cubital vein was taken from all the subjects three times: before exercise (test A), immediately after performing the standard PWC170 test on a bicycle ergometer (test B), and 60 minutes after performing the stress test (test C). Determination of the concentration of endothelial NO-synthase (eNOS) and platelet-activating factor (PAF) in plasma was performed by enzyme immunoassay.
Results. It has been shown that the features of endothelial reactivity in athletes of various specializations in comparison with untrained volunteers are significantly associated with the level of eNOS production both at rest and in response to short-term physical exertion. Platelet-activating factor can also affect endothelial reactivity, but to a lesser extent, and is involved only in the mechanisms of adaptation to repetitive high-intensity physical loads.
About the Authors
L. V. KapilevichRussian Federation
36, Lenin Ave., Tomsk, 634050, Russian Federation
2, Moscow Tract, Tomsk, 634050, Russian Federation
V. V. Kologrivova
Russian Federation
36, Lenin Ave., Tomsk, 634050, Russian Federation
K. G. Milovanova
Russian Federation
36, Lenin Ave., Tomsk, 634050, Russian Federation
A. N. Zakharova
Russian Federation
36, Lenin Ave., Tomsk, 634050, Russian Federation
References
1. Green D.J., Spence A., Rowley N. et al. Vascular adaptation in athletes: is there an athlete’s artery? Exp. Physiol. 2012; 97 (3): 295–304. DOI: 10.1113/expphysiol.2011.058826.
2. Laughlin M.H., Newcomer S.C., Bender S.B. Importance of hemodynamic forces as signals for exercise-induced changes in endothelial cell phenotype. J. Appl. Physiol. 2008; 104 (3): 588– 600. DOI: 10.1152/japplphysiol.01096.2007.
3. Lee D.C., Sui X., Artero E.G. et al. Long-term effects of changes in cardiorespiratory fitness and body mass index on all-cause and cardiovascular disease mortality in men: the Aerobics Center Longitudinal Study. Circulation. 2011; 124 (23): 2483–2490. DOI: 10.1161/CIRCULATIONAHA.111.038422.
4. Kapilevitch L.V., Kologrivova V.V., Zakharova A.N., Mourot L. Post-exercise endothelium-dependent vasodilation is dependent of training status. Front. Physiol. 2020; 11: 348. DOI: 10.3389/fphys.2020.00348.
5. Кологривова В.В., Захарова А.Н., Пахомова Е.В. и др. Характеристика эндотелий-зависимой вазодилатации у спортсменов и нетренированных мужчин. Бюллетень сибирской медицины. 2018; 17 (2): 42–46. DOI: 10.20538/1682-0363-2018-4-42-46.
6. Дьякова Е.Ю., Капилевич Л.В. Захарова А.Н. и др. Содержание эндотелиальной синтазы оксида азота в плазме после физических нагрузок различного характера. Бюллетень сибирской медицины. 2017; 16 (1): 20–26. DOI: 10.20538/1682-0363-2017-1-20-26.
7. Cocks M., Shaw C.S., Shepherd S.O. et al. Sprint interval and endurance training are equally effective in increasing muscle microvascular density and eNOS content in sedentary males. J. Physiol. 2013; 591 ( 3): 641–656. DOI: 10.1113/jphysiol.2012.239566.
8. Frandsen U., Höffner L., Betak A. et al. Endurance training does not alter the level of neuronal nitric oxide synthase in human skeletal muscle. J. Appl. Physiol. 2000; 89 (3): 1033–1038. DOI: 10.1152/jappl.2000.89.3.1033.
9. Wang J.S., Liao C.H. Moderate-intensity exercise suppresses platelet activation and polymorphonuclear leukocyte interaction with surface-adherent platelets under shear flow in men. Thromb. Haemost. 2004; 91 (3): 587–594. DOI: 10.1160/TH03-10-0644.
10. Whittaker J.P. Linden M.D., Coffey V.G. Effect of aerobic interval training and caffeine on blood platelet function. Med. Sci. Sports Exerc. 2013; 45 (2): 342–350. DOI: 10.1249/MSS.0b013e31827039db.
11. Hanke A.A., Staib A., Görlinger K. et al. Whole blood coagulation and platelet activation in the athlete: a comparison of marathon, triathlon and long distance cycling. Eur. J. Med. Res. 2010; 15 (2): 59–65. DOI: 10.1186/2047-783x-15-2-59.
12. Сергиенко В.И., Кантюков С.А., Ермолаева Е.Н. и др. Хемилюминесценция тромбоцитов при физических нагрузках разной интенсивности. Бюллетень экспериментальной биологии и медицины. 2019; 167 (6): 686–689. DOI: 10.1007/s10517-019-04610-0.
13. De Meirelles L.R. et al. Chronic exercise leads to antiaggregant, antioxidant and anti-inflammatory effects in heart failure patients. Eur. J. Prev. Cardiol. 2014; 21 (10): 1225–1232. DOI: 10.1177/2047487313491662.
14. Hawley J.A., Hargreaves M., Joyner M.J., Zierath J.R. Integrative biology of exercise. Cell. 2014; 159 (4): 738–749. DOI: 10.1016/j.cell.2014.10.029.
15. Dzau V.J., Gibbons G.H., Morishita R., Pratt R.E. New perspectives in hypertension research. Potentials of vascular biology. Hypertension. 1994; 23: 1132–1140. DOI: 10.1161/01.hyp.23.6.1132.
Review
For citations:
Kapilevich L.V., Kologrivova V.V., Milovanova K.G., Zakharova A.N. Effect of physical load on the concentration of endothelial NO-synthase and platelet-activation factor in plasma of athletes. Bulletin of Siberian Medicine. 2021;20(1):45-49. https://doi.org/10.20538/1682-0363-2021-1-45-49