Preview

Bulletin of Siberian Medicine

Advanced search

Effect of malignant growth and chronic neurogenic pain on neurotrophin levels in rat brain

https://doi.org/10.20538/1682-0363-2021-1-112-118

Abstract

 Aim. Determination of neurotrophin levels in gray and white matter of the brain in rats with tumor growth associated with chronic neurogenic pain (CNP).

Materials and methods. The study included white outbred male rats (n = 74). In the main group, the CNP model was created (by bilateral sciatic nerve ligation), and after 45 days, M1 sarcoma was transplanted subcutaneously (n = 11) or into the subclavian vein (n = 11). Two comparison groups (n = 13 each) consisted of sham operated animals with M1 sarcoma transplanted subcutaneously and intravenously, but without CNP. Control groups were animals with CNP and sham operated animals. Rats were euthanized on the  21st day of carcinogenesis. The enzymelinked immunosorbent assay (ELISA)  was used to determine brain levels of brain-derived neurotrophic factor (BDNF) (R&D System, USA & Canada), nerve growth factor (β-NGF),  neurotrophin-3 (NT-3), neurotrophin 4/5 (NT-4) (RayBiotech, USA).

Results. CNP caused an increase in β-NGF levels in the cortex and white matter and BDNF levels only in white matter of the rat brain. Chronic pain stimulated M1 sarcoma growth in both subcutaneous and intravenous transplantation. The dynamics of neurotrophins levels in brain structures  differed depending on the tumor site.

Conclusion. Thus, the results demonstrated that in both normal peripheral tumor growth and in tumor growth against the background of CNP, changes in neurotrophin levels in the brain of experimental animals can reflect the body reaction to chronic pain and stress caused by the peripheral tumor  growth. 

About the Authors

E. M. Frantsiyants
Rostov Research Institute of Oncology (RRIO)
Russian Federation

 63, 14 Liniya, Rostov-on-Don, 344037, Russian Federation 



V. A. Bandovkina
Rostov Research Institute of Oncology (RRIO)
Russian Federation

 63, 14 Liniya, Rostov-on-Don, 344037, Russian Federation 



I. V. Kaplieva
Rostov Research Institute of Oncology (RRIO)
Russian Federation

 63, 14 Liniya, Rostov-on-Don, 344037, Russian Federation 



N. D. Cheryarina
Rostov Research Institute of Oncology (RRIO)
Russian Federation

 63, 14 Liniya, Rostov-on-Don, 344037, Russian Federation 



I. V. Neskubina
Rostov Research Institute of Oncology (RRIO)
Russian Federation

 63, 14 Liniya, Rostov-on-Don, 344037, Russian Federation 



E. I. Surikova
Rostov Research Institute of Oncology (RRIO)
Russian Federation

 63, 14 Liniya, Rostov-on-Don, 344037, Russian Federation 



I. M. Kotieva
Rostov Research Institute of Oncology (RRIO)
Russian Federation

 63, 14 Liniya, Rostov-on-Don, 344037, Russian Federation 



L. K. Trepitaki
Rostov Research Institute of Oncology (RRIO)
Russian Federation

 63, 14 Liniya, Rostov-on-Don, 344037, Russian Federation 



References

1. Яхно Н.Н., Кукушкин М.Л. Хроническая боль: медико-биологические и социально-экономические аспекты. Вестник РАМН. 2012; (9): 54–58.

2. Kuner R. Spinal excitatory mechanisms of pathological pain. Pain. 2015; 156 (Suppl. 1): S11–117. DOI: 10.1097/j.pain.0000000000000118.

3. Garraway S.M., Huie J.R. Spinal plasticity and behavior: BDNF-induced neuromodulation in uninjured and injured spinal cord. Neural Plast. 2016; 2016: 9857201. DOI: 10.1155/2016/9857201.

4. Rocco M.L., Soligo M., Manni L., Aloe L. Nerve Growth Factor: Early Studies and Recent Clinical Trials. Current Neuropharmacology. 2018; 16 (10): 1455–1465. DOI: 10.2174/1570159X16666180412092859.

5. Romero M.I., Rangappa N., Garry M.G., Smith G.M. Functional regeneration of chronically injured sensory afferents into adult spinal cord after neurotrophin gene therapy. J. Neurosci. 2001; 21: 8408–8416. DOI: 10.1523/JNEUROSCI.21-21-08408.2001.

6. Gu Y.L., Yin L.W., Zhang Z., Liu J., Liu S.J., Zhang L.F., Wang T.H. Neurotrophin expression in neural stem cells grafted acutely to transected spinal cord of adult rats linked to functional improvement. Cell. Mol. Neurobiol. 2012; 32 (7): 1089–1097. DOI: 10.1007/s10571-012-9832-4.

7. Sahenk Z., Nagaraja H.N., McCracken B.S., King W.M., Freimer M.L., Cedarbaum J.M., Mendell J.R. NT-3 promotes nerve regeneration and sensory improvement in CMT1A mouse models and in patients. Neurology. 2005; 65 (5): 681–689. DOI: 10.1212/01.WNL.0000171978.70849.c5.

8. Meldolesi J. Neurotrophin Trk receptors: New targets for cancer therapy. Rev. Physiol. Biochem. Pharmacol. 2018; 174: 67–79. DOI: 10.1007/112_2017_6.

9. Кит О.И., Котиева И.М., Франциянц Е.М., Каплиева И.В., Трепитаки Л.К., Бандовкина В.А., Черярина Н.Д., Погорелова Ю.А., Бликян М.В. Нейромедиаторные системы головного мозга самок мышей в динамике роста злокачественной меланомы, воспроизведенной на фоне хронической боли. Патогенез. 2017; 15 (4): 49–55. DOI: 10.25557/GM.2018.4.9749.

10. Кит О.И., Франциянц Е.М., Каплиева И.В., Трепитаки Л.К., Котиева И.М., Шалашная Е.В., Ишонина О.Г. Способ стимуляции хронической болью злокачественного роста в легких крыс. Патент РФ № 2676641 от 05.04.2018.

11. Watson J.J., Allen S.J., Dawbarn D. Targeting nerve growth factor in pain: what is the therapeutic potential? BioDrugs. 2008; 22 (6): 349–359. DOI: 10.2165/0063030-200822060-00002.

12. Sainoh T., Sakuma Y., Miyagi M., Orita S., Yamauchi K., Inoue G., Kamoda H., Ishikawa T., Suzuki M., Kubota G., Oikawa Y., Inage K., Sato J., Nakamura J., Aoki Y., Takaso M., Toyone T., Takahashi K., Ohtori S. Efficacy of anti-nerve growth factor therapy for discogenic neck pain in rats. Spine. 2014; 39 (13): E757–E762. DOI: 10.1097/BRS.0000000000000340.

13. Thibault K., Lin W.K., Rancillac A., Fan M., Snollaerts T., Sordoillet V., Hamon M., Smith G.M., Lenkei Z., Pezet S. BDNF-dependent plasticity induced by peripheral inflammation in the primary sensory and the cingulate cortex triggers cold allodynia and reveals a major role for endogenous BDNF as a tuner of the affective aspect of pain. J. Neurosci. 2014; 34 (44): 14739–14751. DOI: 10.1523/JNEUROSCI.0860-14.2014.

14. Miyagi M., Ishikawa T., Kamoda H., Suzuki M., Inoue G., Sakuma Y., Oikawa Y., Uchida K., Suzuki T., Takahashi K., Takaso M., Ohtori S. The efficacy of nerve growth factor antibody in a mouse model of neuropathic cancer pain. Experimental Animals. 2016; 65 (4): 337– 343. DOI: 10.1538/expanim.16-0014.

15. Manners M.T., Tian Y., Zhou Z., Ajit S.K. MicroRNAs downregulated in neuropathic pain regulate MeCP2 and BDNF related to pain sensitivity. FEBS Open Biol. 2015; 5: 733–740. DOI: 10.1016/j.fob.2015.08.010.

16. Donnerer J., Liebmann I. Upregulation of BDNF and Interleukin-1ss in rat spinal cord following noxious hind paw stimulation. Neurosci. Lett. 2018; 665: 152–155. DOI: 10.1016/j.neulet.2017.12.008.

17. Zaletel I., Filipovic D., Puskas N. Hippocampal BDNF in physiological conditions and social isolation. Rev. Neurosci. 2017; 28 (6): 675–692. DOI: 10.1515/revneuro-2016-0072.

18. Murinova J., Hlavacova N., Chmelova M., Riecansky I. The evidence for altered BDNF expression in the brain of rats reared or housed in social isolation: a systematic review. Front. Behav. Neurosci. 2017; 11: 101. DOI: 10.3389/fnbeh.2017.00101.

19. Seminowicz D.A., Moayedi M. The dorsolateral prefrontal cortex in acute and chronic pain. J. Pain. 2017; 18 (9): 1027–1035. DOI: 10.1016/j.jpain.2017.03.008.

20. Banerjee R., Ghosh A., Ghosh B., Bhattacharyya S., Mondal A. Decreased mRNA and protein expression of BDNF, NGF, and their receptors in the hippocampus from suicide: an analysis in human postmortem brain. Clin. Med. Insights Pathol. 2013; 6: 1–11. DOI: 10.4137/CMPath.S12530.

21. Wang W., Chen J., Guo X. The role of nerve growth factor and its receptors in tumorigenesis and cancer pain. Biosci. Trends. 2014; 8 (2): 68–74. DOI: 10.5582/bst.8.68.

22. Sosanya N.M., Garza T.H., Stacey W., Crimmins S.L., Christy R.J., Cheppudira B.P. Involvement of brain-derived neurotrophic factor (BDNF) in chronic intermittent stress- induced enhanced mechanical allodynia in a rat model of burn pain. BMC Neuroscience. 2019; 20 (1): 17. DOI: 10.1186/s12868-019-0500-1.


Review

For citations:


Frantsiyants E.M., Bandovkina V.A., Kaplieva I.V., Cheryarina N.D., Neskubina I.V., Surikova E.I., Kotieva I.M., Trepitaki L.K. Effect of malignant growth and chronic neurogenic pain on neurotrophin levels in rat brain. Bulletin of Siberian Medicine. 2021;20(1):112-118. https://doi.org/10.20538/1682-0363-2021-1-112-118

Views: 562


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1682-0363 (Print)
ISSN 1819-3684 (Online)