Preview

Bulletin of Siberian Medicine

Advanced search

Modern scintigraphic methods for assessing myocardial blood flow and reserve

https://doi.org/10.20538/1682-0363-2021-1-178-189

Abstract

 Background. Today, myocardial perfusion scintigraphy is an informative and accessible method for evaluating ischemic changes in the heart. However, this method has limitations, which are more connected with a semiquantitative assessment of the study results. Currently, there is a class of specialized gamma cameras with detectors based on cadmium-zinc-telluride, which allow quantitative analysis of scintigraphic data on coronary hemodynamics, i.e. evaluate indicators of coronary blood flow and reserve.

The aim of the review was to present and summarize the information about the coronary circulation within physiological and pathological conditions, as well as the possibilities of modern radionuclide methods in assessing coronary blood flow and reserve.

Materials and methods. In the process of preparing the review article, “PubMed”, “Web of Science”, “ScienceDirect” and “Elibrary” scientific databases were used. Search requests included keywords such as: coronary artery disease, myocardial blood flow, coronary (myocardial) flow reserve, single-photon emission computed tomography, cadmium-zinc-telluride, positron emission tomography.

Results. The review includes information on the state and methods of regulating coronary hemodynamics under normal conditions and against the background of pathological changes. It also includes information about radionuclide methods for assessing coronary hemodynamics, which are of  historical importance, currently used and promising, as well as dynamic single-photon emission computed tomography.

Conclusion. The potential of dynamic single-photon emission computed tomography as a method for quantification of coronary blood flow and reserve is high. This technique can become a simple and affordable alternative to the existing methods for assessing coronary (myocardial) blood flow and reserve. This will increase the information content of radionuclide diagnostics in assessing the severity of coronary insufficiency for more accurate risk stratification and determination of appropriate treatment tactics for cardiac patients. 

About the Authors

A. V. Mochula
Cardiology Research Institute, Tomsk National Research Medical Center (Tomsk NRMC), Russian Academy of Sciences
Russian Federation

 111a, Kievskaya Str., Tomsk, 634012, Russian Federation 



A. N. Maltseva
Cardiology Research Institute, Tomsk National Research Medical Center (Tomsk NRMC), Russian Academy of Sciences
Russian Federation

 111a, Kievskaya Str., Tomsk, 634012, Russian Federation 



K. V. Zavadovsky
Cardiology Research Institute, Tomsk National Research Medical Center (Tomsk NRMC), Russian Academy of Sciences
Russian Federation

 111a, Kievskaya Str., Tomsk, 634012, Russian Federation 



References

1. Kajander S.A., Joutsiniemi E., Saraste M., Pietila M., Ukkonen H., Saraste A., Sipila H.T., Teras M., Maki M., Airaksinen J., Hartiala J., Knuuti J. Clinical value of absolute quantification of myocardial perfusion with 15o- water in coronary artery disease. Circ. Cardiovasc. Imaging. 2011; 4 (6): 678–684. DOI: 10.1161/CIRCIMAGING.110.960732.

2. Kaufmann P.A., Camici P.G. Myocardial blood flow measurement by PET: Technical aspects and clinical applications. J. Nucl. Med. 2005; 46 (1): 75–88.

3. Kassab G.S., Lin D.H., Fung Y.C. Morphometry of pig coronary venous system. Am. J. Physiol. 1994; 267 (6 Pt 2): H2100–H2113. DOI: 10.1152/ajpheart.1994.267.6.H2100.

4. Dawson D., Rinkevich D., Belcik T., Jayaweera A.R., Rafter P., Kaul S., Wei K. Measurement of myocardial blood flow velocity reserve with myocardial contrast echocardiography in patients with suspected coronary artery disease: comparison with quantitative gated Technetium 99m-sestamibi single photon emission computed tomography. J. Am. Soc. Echocardiogr. 2003; 16 (11): 1171–1177. DOI: 10.1067/S0894-7317(03)00646-1.

5. Dodge J.T. Jr., Brown B.G., Bolson E.L., Dodge H.T. Lumen diameter of normal human coronary arteries. Influence of age, sex, anatomic variation, and left ventricular hypertrophy or dilation. Circulation. 1992; 86 (1): 232–246. DOI: 10.1161/01.cir.86.1.232.

6. Herrmann J., Kaski L.C., Lerman A. Coronary Microvascular dysfunction in the clinical setting: from mystery to reality. Eur. Heart J. 2012; 33 (22): 2771–2783. DOI: 10.1093/eurheartj/ehs246.

7. Nijjer S.S., de Waard G.A., Sen S., van de Hoef T.P., Petraco R., Echavarría-Pinto M., van Lavieren M.A., Meuwissen M., Danad I., Knaapen P., Escaned J., Piek J.J., Davies J.E., van Royen N. Coronary pressure and flow relationships in humans: phasic analysis of normal and pathological vessels and the implications for stenosis assessment: a report from the Iberian-Dutch-English (IDEAL) collaborators. Eur. Heart J. 2016; 37 (26): 2069–2080. DOI: 10.1093/eurheartj/ehv626.

8. Westerhof N., Boer C., Lamberts R.R., Sipkema P. Cross-talk between cardiac muscle and coronary vasculature. Physiol. Rev. 2006; 86 (4): 1263–308. DOI: 10.1152/physrev.00029.2005.

9. Marcus M.L., Harrison D.G., White C.W., Hiratzka L.F. Assessing the physiological significance of coronary obstruction in man. Can. J. Cardiol. 1986; (Suppl. A): 195A–199A.

10. Lamping K.G., Kanatsuka H., Eastham C.L., Chilian W.M., Marcus M.L. Nonuniform vasomotor responses of the coronary microcirculation to serotonin and vasopressin. Circ. Res. 1989; 65 (2): 343–351. DOI: 10.1161/01.res.65.2.343.

11. Kanatsuka H., Lamping K.G., Eastham C.L., Marcus M.L. Heterogeneous changes in epimyocardial microvascular size during graded coronary stenosis. Evidence of the microvascular site for autoregulation. Circ. Res. 1990; 66: 389–396. DOI: 10.1161/01.res.66.2.389.

12. Berne R.M. Cardiac nucleotides in hypoxia: possible role in regulation of coronary blood flow. Am. J. Physiol. 1963; 204: 317–322. DOI: 10.1152/ajplegacy.1963.204.2.317.

13. Case R.B., Greenberg H. The Response of сanine сoronary vascular resistance to local alterations in coronary arterial P CO2. Circ. Res. 1976; 39 (4): 558–566. DOI: 10.1161/01.res.39.4.558.

14. Ishizaka H., Kuo L. Acidosis-induced coronary arteriolar dilation is mediated by ATP-sensitive potassium channels in vascular smooth muscle. Circ. Res. 1996; 78 (1): 50–57. DOI: 10.1161/01.res.78.1.50.

15. Feigl E.O. Berne’s adenosine hypothesis of coronary blood flow control. Am. J. Physiol. Heart Circ. Physiol. 2004; 287 (5): H1891–1894. DOI: 10.1152/classicessays.00003.2004.

16. Kuo L., Davis M.J., Chilian W.M. Myogenic activity in isolated subepicardial and subendocardial coronary arterioles. Am. J. Physiol. 1988; 255 (6–2): H1558–1562. DOI: 10.1152/ajpheart.1988.255.6.H1558.

17. Cornelissen A.J., Dankelman J., Van Bavel E., Spaan J.A. Balance between myogenic, flow-dependent, and metabolic flow control in coronary arterial tree: a model study. Am. J. Physiol. Heart Circ. Physiol. 2002; 282(6):H2224–H2237. DOI: 10.1152/ajpheart.00491.2001.

18. Lundberg J.O., Gladwin M.T., Weitzberg E. Strategies to increase nitric oxide signalling in cardiovascular disease. Nat. Rev. Drug. Discov. 2015; 14 (9): 623–641. DOI: 10.1038/nrd4623.

19. Duncker D.J., Bache R.J. Regulation of coronary blood flow during exercise. Physiol. Rev. 2008; 88 (3): 1009–1086. DOI:10.1152/physrev.00045.2006.

20. Camm J.A., Luscher T.F., Serruys P.W. The ESC textbook of cardiovascular medicine. 2nd ed. Oxford: Oxford University Press, 2009: 1398.

21. Camici P.G., Rimoldi O.E. The сlinical value of myocardial blood flow measurement. J. Nucl. Med. 2009; 50 (7): 1076–1087. DOI: 10.2967/jnumed.108.054478.

22. Gould K.L., Lipscomb K., Hamilton G.W. Physiologic basis for assessing critical coronary stenosis. Instantaneous flow response and regional distribution during coronary hyperemia as measures of coronary flow reserve. Am. J. Cardiol. 1974; 33 (1): 87–94. DOI: 10.1016/0002-9149(74)90743-7.

23. Nijjer S.S., de Waard G.A., Sen S., van de Hoef T.P., Petraco R., Echavarría-Pinto M., van Lavieren M.A., Meuwissen M., Danad I., Knaapen P., Escaned J., Piek J.J., Davies J.E., van Royen N. Coronary pressure and flow relationships in humans: phasic analysis of normal and pathological vessels and the implications for stenosis assessment: a report from the Iberian-Dutch-English (IDEAL) collaborators. Eur. Heart J. 2016; 37 (26): 2069–2080. DOI: 10.1093/eurheartj/ehv626.

24. Lee J.M., Hwang D., Park J., Zhang J., Tong Y., Kim C.H., Bang J.I., Suh M., Paeng J.C., Cheon G.J., Koo B.K. Exploring coronary circulatory response to stenosis and its association with invasive physiologic indexes using absolute myocardial blood flow and coronary pressure. Circulation. 2017; 136 (19): 1798–1808. DOI: 10.1161/CIRCULATIONAHA.117.029911.

25. Heymann M.A., Payne B.D., Hoffman J.I., Rudolph A.M. Blood flow measurements with radionuclide-labeled microspheres. Prog. Cardiovasc. Dis. 1977; 20 (1): 55–79. DOI: 10.1016/s0033-0620(77)80005-4.

26. Prinzen F.W., Glenny R.W. Developments in non- radioactive microsphere techniques for blood flow measurement. Cardiovasc. Res. 1994; 28 (10): 1467–1475. DOI: 10.1093/cvr/28.10.1467.

27. Bassingthwaighte J.B., Malone M.A., Moffett T.C., King R.B., Chan I.S., Link J.M., Krohn K.A. Molecular and particulate depositions for regional myocardial flows in sheep. Circ. Res. 1990; 66 (5): 1328–1344. DOI: 10.1161/01.res.66.5.1328.

28. Austin R.E., Hauck W.W., Aldea G.S., Flynn A.E., Coggins D.L., Hoffman J.I. Quantitating error in blood flow measurements with radioactive microspheres. Am. J. Physiol. 1989; 257 (1 Pt 2): H280–H288. DOI: 10.1152/ajpheart.1989.257.1.H280.

29. Ashburn W.L., Braunwald E., Simon A.L., Peterson K.L., Gault J.H. Myocardial perfusion imaging with radioactive-labeled par tides injected directly into the coronary circulation of patients with coronary artery disease. Circulation. 1971; 44: 851–865. DOI: 10.1161/01.cir.44.5.851.

30. Чорголиани Т.Н., Грацианский H.A., Будницкий В.А. Микроциркуляция миокарда по данным сцинтиграфии с меченными микросферами. Медицинская радиология. 1989; 2 (34): 17–21.

31. Gould K.L., Johnson N.P., Bateman T.M., Beanlands R.S., Bengel F.M., Bober R., Camici P.G., Cerqueira M.D.,

32. Chow B.J.W., Di Carli M.F., Dorbala S., Gewirtz H., Gropler R.J., Kaufmann P.A., Knaapen P., Knuuti J., Merhige M.E., Rentrop K.P., Ruddy T.D., Schelbert H.R., Schindler T.H., Schwaiger M., Sdringola S., Vitarello J., Williams K.A.Sr., Gordon D., Dilsizian V., Narula J. Anatomic versus physiologic assessment of coronary artery disease: Role of coronary flow reserve, fractional flow reserve, and positron emission tomography imaging in revascularization decision-making. J. Am. Coll. Cardiol. 2013: 62 (18): 1639– 1653. DOI: 10.1016/j.jacc.2013.07.076.

33. Бокерия Л.А., Асланиди И.П., Шурупова И.В., Чернова А.А. Значение совмещенной стресс-ПЭТ/КТ миокарда с контрастным усилением коронарных артерий при обследовании пациентов с верифицированной и предполагаемой ишемической болезнью сердца. Бюллетень НЦССХ им. А.Н. Бакулева РАМН «Сердечно-сосудистые заболевания». 2016; 17 (4): 4–11.

34. Knaapen P. Quantitative myocardial blood flow imaging: not all flow is equal. Eur. J. Nucl. Med. Mol. Imaging. 2014; 41 (1): 116–118. DOI: 10.1007/s00259-013-2585-6.

35. Tio R.A., Dabeshlim A., Siebelink H.M. de Sutter J., Hillege H.L., Zeebregts C.J., Dierckx R.A., van Veldhuisen D.J., Zijlstra .F, Slart R.H. Comparison between the prognostic value of left ventricular function and myocardial perfusion reserve in patients with ischemic heart disease. J. Nucl. Med. 2009; 50 (2): 214–219. DOI: 10.2967/jnumed.108.054395.

36. Herzog B.A., Husmann L., Valenta I., Gaemperli O., Siegrist P.T., Tay F.M., Burkhard N., Wyss C.A., Kaufmann P.A. Long-term prognostic value of 13N-ammonia myocardial perfusion positron emission tomography added value of coronary flow reserve. J. Am. Coll. Cardiol. 2009; 54 (2): 150–156. DOI: 10.1016/j.jacc.2009.02.069.

37. Fukushima K., Javadi M.S., Higuchi T., Lautamaki R., Merrill J., Nekolla S.G., Bengel F.M. Prediction of short-term cardiovascular events using quantification of global myocardial flow reserve in patients referred for clinical 82Rb PET perfusion imaging. J. Nucl. Med. 2011; 52 (5): 726–732. DOI: 10.2967/jnumed.110.081828.

38. Ziadi M.C., Dekemp R.A., Williams K.A., Guo A., Chow B.J., Renaud J.M., Ruddy T.D., Sarveswaran N., Tee R.E., Beanlands R.S. Impaired myocardial flow reserve on rubidium-82 positron emission tomography imaging predicts adverse outcomes in patients assessed for myocardial ischemia. J. Am. Coll. Cardiol. 2011; 58 (7): 740–748. DOI: 10.1016/j.jacc.2011.01.065.

39. Murthy V.L., Naya M., Foster C.R., Hainer J., Gaber M., Di Carli G., Blankstein R., Dorbala S., Sitek A., Pencina M.J., Di Carli M.F. Improved cardiac risk assessment with noninvasive measures of coronary flow reserve. Circulation. 2011; 124 (20): 2215–2224. DOI: 10.1161/CIRCULATIONAHA.111.050427.

40. Preliminary report on supply of radioisotopes for medical use and current developments in nuclear medicine; rev. 8. Luxembourg: SANCO/C/3/HWD, 2009; 67.

41. Iida H., Eberl S., Kim K., Tamura Y., Ono Y., Nakazawa M., Sohlberg A., Zeniya T., Hayashi T., Watabe H. Absolute quantitation of myocardial blood flow with 201Tl and dynamic SPECT in canine: optimisation and validation of kinetic modelling. Eur. Nucl. Med. Mol. Imaging. 2008; 35 (5): 896–905. DOI: 10.1007/s00259-007-0654-4.

42. Gullberg G.T., Di Bella E.V., Sinusas A.J. Estimation of coronary flow reserve: can SPECT compete with other modalities? J. Nucl. Cardiol. 2001; 8 (5): 620–625. DOI: 10.1067/mnc.2001.118121.

43. Yoshinori I., Chietsugu K., Kazuyuki N., Kuge Y., Furuyama H., Morita K., Kohya T., Kitabatake A., Tamaki N. Estimation of myocardial blood flow and myocardial flow reserve by 99mTc-sestamibi imaging: comparison with the results of [15O]H2O PET. EJNMMI. 2003; 30 (2): 281–287. DOI: 10.1007/s00259-002-1031-y.

44. Storto G., Cirillo P., Vicario M.L., Pellegrino T., Sorrentino A.R., Petretta M., Galasso G., De Sanctis V., Piscione F., Cuocolo A. Estimation of coronary flow reserve by Tc-99m sestamibi imaging in patients with coronary artery disease: Comparison with the results of intracoronary Doppler technique. J. Nucl. Cardiol. 2004; 11 (6): 682–688. DOI: 10.1016/j.nuclcard.2004.08.007/

45. Hsu B., Hu L.H., Yang B.H., Chen L.C., Chen Y.K., Ting C.H., Hung G.U., Huang W.S., Wu T.C. SPECT myocardial blood flow quantitation toward clinical use: a comparative study with (13)N-Ammonia PET myocardial blood flow quantitation. Eur. J. Nucl. Med. Mol. Imaging. 2017; 441 (1): 17–28. DOI: 10.1007/s00259-016-3491-5.

46. Tsukamoto T., Ito Y., Noriyasu K., Morita K., Katoh C., Okamoto H., Tamaki N. Quantitative assessment of regional myocardial flow reserve using Tc-99m-sestamibi imaging comparison with results of 15O-water PET. Circ. J. 2005; 69 (2): 188–193. DOI: 10.1253/circj.69.188.

47. Slomka P., Berman D.S., Germano G. Myocardial blood flow from SPECT. J. Nucl. Cardiol. 2017; 24 (1): 278–281. DOI: 10.1007/s12350-015-0386-y.

48. Imbert L., Poussier S., Franken P.R., Songy B., Verger A., Morel O., Wolf D., Noel A, Karcher G., Marie P.Y. Compared performance of high-sensitivity cameras dedicated to myocardial perfusion SPECT: a comprehensive analysis of phantom and human images. J. Nucl. Med. 2012; 53 (12): 1897–1903. DOI: 10.2967/jnumed.112.107417.

49. Klein R., Hung G.U., Wu T.C., Huang W.S., Li D., de Kemp R.A., Hsu B. Feasibility and operator variability of myocardial blood flow and reserve measurements with 99mTc-sestamibi quantitative dynamic SPECT/CT imaging. J. Nucl. Cardiol. 2014; 21 (6): 1075–1088. DOI: 10.1007/s12350-014-9971-8.

50. Hsu B., Chen F.C., Wu T.C., Huang W.S., Hou P.N., Chen C.C., Hung G.U. Quantitation of myocardial blood flow and myocardial flow reserve with 99mTc-sestamibi dynamic SPECT/CT to enhance detection of coronary artery disease. Eur. J. Nucl. Med. Mol. Imaging. 2014; 41 (12): 2294–2306. DOI: 10.1007/s00259-014-2881-9.

51. Wells R.G., Timmins R., Klein R., Lockwood J., Marvin B., deKemp R.A., Wei L., Ruddy T.D. Dynamic SPECT measurement of absolute myocardial blood flow in a porcine model. J. Nucl. Med. 2014; 55 (10): 1685–1691. DOI: 10.2967/jnumed.114.139782.

52. Ben-Haim S., Murthy V.L., Breault C., Allie R., Sitek A., Roth N., Fantony J., Moore S.C., Park M.A., Kijewski M., Haroon A., Slomka P., Erlandsson K., Baavour R., Zilberstien Y., Bomanji J., Di Carli M.F. Quantification of Myocardial Perfusion Reserve Using Dynamic SPECT Imaging in Humans: A Feasibility Study. J. Nucl. Med. 2013; 54 (6): 873–879. DOI: 10.2967/jnumed.112.109652.

53. Bouallègue F.B., Roubille F., Lattuca B., Cung T.T., Macia J.C., Gervasoni R., Leclercq F., Mariano-Goulart D. SPECT myocardial perfusion reserve in patients with multivessel coronary disease: correlation with angiographic findings and invasive fractional flow reserve measurements. J. Nucl. Med. 2015; 56 (11): 1712–1717. DOI: 10.2967/jnumed.114.143164.

54. Nkoulou R., Fuchs T.A., Pazhenkottil A.P., Kuest S.M., Ghadri J.R., Stehli J., Fiechter M., Herzog B.A., Gaemperli O., Buechel R.R., Kaufmann P.A. Absolute myocardial blood flow and flow reserve assessed by gated spect with cadmium-zinc-telluride detectors using 99mTc-Tetrofosmin: Head-to-head comparison with 13N-Ammonia PET. J. Nucl. Med. 2016; 57 (12): 1887–1892. DOI: 10.2967/jnumed.115.165498.

55. Fang Y.D., Liu Y.C., Ho K.C., Kuo F.C., Yang C.F., Yen T.C., Hsieh I.C. Single-scan rest/stress imaging with Tc-Sestamibi and cadmium zinc telluride-based SPECT for hyperemic flow quantification: A feasibility study evaluated with cardiac magnetic resonance imaging. PLoS One. 2017; 12 (8): e0183402. DOI: 10.1371/journal.pone.0183402.

56. Miyagawa M., Nishiyama Y., Uetani T., Ogimoto A., Ikeda S., Ishimura H., Watanabe E., Tashiro R., Tanabe Y., Kido T., Kurata A., Mochizuki T. Estimation of myocardial flow reserve utilizing an ultrafast cardiac SPECT: Comparison with coronary angiography, fractional flow reserve, and the SYNTAX score. Int. J. Cardiol. 2017; 244: 347–353. DOI: 10.1016/j.ijcard.2017.06.012.

57. Wells R.G., Marvin B., Poirier M., Renaud J., deKemp R.A., Ruddy T.D. Optimization of SPECT measurement of myocardial blood flow with corrections for attenuation, motion, and blood binding compared with PET. J. Nucl. Med. 2017; 58 (12): 2013–2019. DOI: 10.2967/jnumed.117.191049.

58. Agostini D., Roule V., Nganoa C., Roth N., Baavour R., Parienti J.J., Beygui F., Manrique A. First validation of myocardial flow reserve assessed by dynamic 99mTc-sestamibi CZT-SPECT camera: head to head comparison with 15O-water PET and fractional flow reserve in patients with suspected coronary artery disease. The WATERDAY study. Eur. J. Nucl. Med. Mol. Imaging. 2018; 45 (7): 1079–1090. DOI: 10.1007/s00259-018-3958-7.

59. Zavadovsky K.V., Mochula A.V., Boshchenko A.A., Vrublevsky A.V., Baev A.E., Krylov A.L., Gulya M.O., Nesterov E.A., Liga R., Gimelli A. Absolute myocardial blood flows derived by dynamic CZT scan vs invasive fractional flow reserve: Correlation and accuracy. J. Nucl. Cardiol. 2019. DOI: 10.1007/s12350-019-01678-z.

60. Мочула А.В., Завадовский К.В., Андреев С.Л., Лишманов Ю.Б. Динамическая однофотонная эмиссионная компьютерная томография миокарда как метод идентификации многососудистого поражения коронарного русла. Вестник рентгенологии и радиологии. 2016; 97 (5): 289–295. DOI: 10.20862/0042-4676-2016-97-5.

61. Завадовский К.В., Мишкина А.И., Мочула А.В., Лишманов Ю.Б. Методика устранения артефактов движения сердца при выполнении перфузионной сцинтиграфии миокарда. Российский электронный журнал лучевой диагностики. 2017; 7 (2): 56–64. DOI: 10.21569/2222-7415-2017-7-2-56-64.


Review

For citations:


Mochula A.V., Maltseva A.N., Zavadovsky K.V. Modern scintigraphic methods for assessing myocardial blood flow and reserve. Bulletin of Siberian Medicine. 2021;20(1):178-189. https://doi.org/10.20538/1682-0363-2021-1-178-189

Views: 912


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1682-0363 (Print)
ISSN 1819-3684 (Online)