Effects of a high-fat, high-carbohydrate diet on blood cells of rats
https://doi.org/10.20538/1682-0363-2021-3-6-12
Abstract
Aim. To study the effects of a high-fat, high-carbohydrate diet on erythrocytes and platelets of rats.
Materials and methods. Male Wistar rats (n = 23) were used for the study. The rats were divided into a control group and an experimental group. The rats from the control group were fed with standard rat chow. The rats from the experimental group had received a high-fat and high-carbohydrate diet for 12 weeks. In the rats, body weight and blood pressure (BP) were measured, an oral glucose tolerance test was carried out, and hematological and lipid metabolism parameters were analyzed. The conductance of erythrocyte KCa-channels was measured by the potentiometric method, and platelet aggregation was determined by the turbidimetric method.
Results. Feeding the rats with a high-fat, high-carbohydrate diet for 12 weeks resulted in obesity, BP elevation, hyperglycemia, impaired glucose tolerance, and dyslipidemia with pronounced triglyceridemia. In the experimental group, a rise in the number of leukocytes, mainly due to granulocytes, and an increase in the number of platelets and their collagen-induced aggregation were observed. The red blood cell count in the rats of the experimental group did not significantly differ from that of the control group. In the experimental group, multidirectional changes in the membrane potential were observed in response to the stimulation of the KCa-channels in the erythrocyte membrane with the Ca2+ ionophore A23187 or artificial redox systems.
Conclusion. The obtained data indicate that a high-fat, high-carbohydrate diet leads to metabolic and hemorheological disorders that are typical of metabolic syndrome.
About the Authors
J. G. BirulinaRussian Federation
2, Moscow Trakt, Tomsk, 634050, Russian Federation
V. V. Ivanov
Russian Federation
2, Moscow Trakt, Tomsk, 634050, Russian Federation
E. E. Buyko
Russian Federation
2, Moscow Trakt, Tomsk, 634050, Russian Federation
30, Lenina Av., Tomsk, 634050, Russian Federation
O. A. Trubacheva
Russian Federation
2, Moscow Trakt, Tomsk, 634050, Russian Federation
111a, Kievskaya Str., Tomsk, 634012, Russian Federation
I. V. Petrova
Russian Federation
2, Moscow Trakt, Tomsk, 634050, Russian Federation
A. Yu. Grechishnikova
Russian Federation
2, Moscow Trakt, Tomsk, 634050, Russian Federation
A. V. Nosarev
Russian Federation
2, Moscow Trakt, Tomsk, 634050, Russian Federation
S. V. Gusakova
Russian Federation
2, Moscow Trakt, Tomsk, 634050, Russian Federation
References
1. Potenza M.V., Mechanick J.I. The metabolic syndrome: definition, global impact, and pathophysiology. Nutr. Clin. Pract. 2009; 24 (5): 560–577. DOI: 10.1177/0884533609342436.
2. Saklayen M.G. The global epidemic of the metabolic syndrome. Curr. Hypertens. Rep. 2018; 20 (2): 12. DOI: 10.1007/s11906-018-0812-z.
3. Aydin S., Aksoy A., Aydin S., Kalayci M, Yilmaz M., Kuloglu T., Citil C., Catak Z. Today’s and yesterday’s of pathophysiology: biochemistry of metabolic syndrome and animal models. Nutrition. 2014; 30 (1): 1–9. DOI: 10.1016/j.nut.2013.05.013.
4. Catoi A.F., Parvu A.E., Andreicut A.D., Mironiuc A., Craciun A., Catoi C., Pop I.D. Metabolically healthy versus unhealthy morbidly obese: chronic inflammation, nitro-oxidative stress, and insulin resistance. Nutrients. 2018; 10 (9): 1199. DOI: 10.3390/nu10091199.
5. Chen Y.Y., Fang W.H., Wang C.C., Kao T.W., Chang Y.W., Yang H.F., Wu C.J., Sun Y.S., Chen W.L. Association of percentage body fat and metabolic health in offspring of patients with cardiovascular diseases. Sci. Rep. 2018; 8 (1): 13831. DOI: 10.1038/s41598-018-32230-7.
6. Lee M.K., Han K., Kim M.K., Koh E.S., Kim E.S., Nam G.E., Kwon H.S. Changes in metabolic syndrome and its components and the risk of type 2 diabetes: a nationwide cohort study. Sci. Rep. 2020; 10 (1): 2313. DOI: 10.1038/s41598-020-59203-z.
7. Zeng N.F., Mancuso J.E., Zivkovic A.M., Smilowitz J.T., Ristenpart W.D. Red blood cells from individuals with abdominal obesity or metabolic abnormalities exhibit less deformability upon entering a constriction. PLoS One. 2016; 11 (6): e0156070. DOI: 10.1371/journal.pone.0156070.
8. Li P.F., Chen J.S., Chang J.B., Chang H.W., Wu C.Z., Chuang T.J., Huang C.L., Pei D., Hsieh C.H., Chen Y.L. Association of complete blood cell counts with metabolic syndrome in an elderly population. BMC Geriatr. 2016; 16: 10. DOI: 10.1186/s12877-016-0182-9.
9. Lang F., Lang E., Föller M. Physiology and pathophysiology of eryptosis. Transfus. Med. Hemother. 2012; 39 (5): 308–314. DOI: 10.1159/000342534.
10. Gyawali P., Richards R.S., Uba Nwose E. Erythrocyte morphology in metabolic syndrome. Expert. Rev. Hematol. 2012; 5 (5): 523‒531. DOI: 10.1586/ehm.12.47.
11. Marseglia L., Manti S., D’Angelo G., Nicotera A., Parisi E., Di Rosa G., Gitto E., Arrigo T. Oxidative stress in obesity: a critical component in human diseases. Int. J. Mol. Sci. 2014; 16 (1): 378–400. DOI: 10.3390/ijms16010378.
12. Zavalishina S.Yu., Kutafina N.V., Vatnikov Yu.A., Makurina O.N., Kulikov E.V., Rystsova E.O., Gurina R.R., Sotnikova E.D. Platelet-activity dependence on the age of rats with experimental dyslipidemia. Biol. Med. (Aligarh). 2016; 8: 326. DOI: 10.4172/0974-8369.1000326.
13. Dupas J., Feray A. Goanvec C., Guernec A., Samson N., Bougaran P., Guerrero F., Mansourati J. Metabolic syndrome and hypertension resulting from fructose enriched diet in Wistar rats. Biomed. Res. Int. 2017; 2017: 2494067. DOI: 10.1155/2017/2494067.
14. Kwitek A.E. Rat models of metabolic syndrome. Methods Mol. Biol. 2019; 2018: 269–285. DOI: 10.1007/978-1-4939-9581-3_13.
15. Francisqueti F.V., Nascimento A.F., Minatel I.O., Dias M.C., Luvizotto R., Berchieri-Ronchi C., Ferreira A., Correa C.R. Metabolic syndrome and inflammation in adipose tissue occur at different times in animals submitted to a high-sugar/fat diet. J. Nutr. Sci. 2017; 6: e41. DOI: 10.1017/jns.2017.42.
16. Suman R.K., Mohanty I.R., Borde M.K., Maheshwari U., Deshmukh Y.A. Development of an experimental model of diabetes co-existing with metabolic syndrome in rats. Adv. Pharmacol. Sci. 2016; 2016: 9463476. DOI: 10.1155/2016/9463476.
17. Monteomo G.F., Kamagate A., Yapo A.P. Effects of metabolic syndrome on blood cells to Wistar rats. J. Diabetes Metab. Disord. Control. 2018; 5 (6): 222‒225. DOI: 10.15406/jdmdc.2018.05.00170.
18. Marques C., Meireles M., Norberto S., Leite J., Freitas J., Pestana D., Faria A., Calhau C. High-fat diet-induced obesity rat model: a comparison between Wistar and Sprague Dawley rat. Adipocyte. 2015; 5 (1): 11–21. DOI: 10.1080/21623945.2015.1061723.
19. Sait S., Alqassas M., Othman S., Shihon S.B., Alqalayta L., Alqusair S., Qari M. Obesity correlates with neutrophilia. Hematol. Transfus. Int. J. 2016; 3 (2): 159–162. DOI: 10.15406/htij.2016.03.00062.
20. Barrachina M.N., Moran L.A., Izquierdo I., Casanueva F.F., Pardo M., Garcia A. Analysis of platelets from a diet-induced obesity rat model: elucidating platelet dysfunction in obesity. Sci. Rep. 2020; 10 (1): 13104. DOI: 10.1038/s41598-020-70162-3.
21. Barrachina M.N., Sueiro A.M., Izquierdo I., Hermida-Nogueira L., Guitian E., Casanueva F.F., Farndale R.W., Moroi M., Jung S.M., Pardo M., Garcia A. GPVI surface expression and signalling pathway activation are increased in platelets from obese patients: elucidating potential anti-atherothrombotic targets in obesity. Atherosclerosis. 2019; 281: 62–70. DOI: 10.1016/j.atherosclerosis.2018.12.023.
22. Ishida K., Taguchi K., Matsumoto T., Kobayashi T., Activated platelets from diabetic rats cause endothelial dysfunction by decreasing akt/endothelial NO synthase signaling pathway. PLoS One. 2014; 9 (7): e102310. DOI: 10.1371/journal.pone.0102310.
23. Birulina Y.G., Petrova I.V., Rozenbaum Y.A., Shefer E.A., Smagliy L.V., Nosarev A.V., Gusakova S.V. H2S-Mediated changes in erythrocyte volume: role of gardos channels, Na+, K+, 2Cl– cotransport and anion exchanger. Bull. Exp. Biol. Med. 2019; 167 (4): 508‒511. DOI: 10.1007/s10517-019-04561-6.
Review
For citations:
Birulina J.G., Ivanov V.V., Buyko E.E., Trubacheva O.A., Petrova I.V., Grechishnikova A.Yu., Nosarev A.V., Gusakova S.V. Effects of a high-fat, high-carbohydrate diet on blood cells of rats. Bulletin of Siberian Medicine. 2021;20(3):6-12. https://doi.org/10.20538/1682-0363-2021-3-6-12