Preview

Bulletin of Siberian Medicine

Advanced search

Assessment of serum BDNF levels in complex rehabilitation of patients with ischemic stroke using traditional approaches to the restoration of motor functions

https://doi.org/10.20538/1682-0363-2021-3-38-45

Abstract

Aim. To assess the relationship between changes in serum brain-derived neurotrophic factor (BDNF) level, regression of motor deficiency, and restoration of functional activity in patients with ischemic stroke after stage II of medical rehabilitation.
Materials and methods. The study included 49 patients with ischemic stroke in the middle cerebral artery after stage I of medical rehabilitation. Group I (n = 32) went through stage II of rehabilitation in the early recovery period, group II (n = 17) was discharged for outpatient monitoring at the place of residence. Observation points: day 14 and day 90. Evaluation scales: National Institute of Health Stroke Scale (NIHSS), Fugle – Meyer Scale (FMA), Modified Rankin Scale (mRS). Serum BDNF levels were determined using a MAGPIX multiplex analyzer (Luminex, USA).
Results. A comparative analysis of the studied population showed that patients who underwent motor rehabilitation in the early recovery period had greater regression of neurologic deficit according to the ΔNIHSS scale (pgr.I–II = 0.043), a more pronounced increase in the functional activity on the ΔmRS scale (pgr.I–II = 0.047), and positive dynamics according to the FMA scale (pday14–90 = 0.003) in comparison with patients who received outpatient follow-up. The concentration of BDNF was significantly reduced by the end of the early recovery in the group II (pday14–90_gr.II = 0.002). On the contrary, there was no decrease in the level of the BDNF (pday14–90_gr.I = 0.613) in the group of patients undergoing rehabilitation.
Conclusion. The results of the study demonstrated the clinical effectiveness of stage II of the comprehensive rehabilitation of patients in the early period of stroke recovery. We can suggest that the success of neurorehabilitation is closely associated with an increase of the BDNF level against the background of its performance. This makes BDNF a potential marker of evaluating the effectiveness of ongoing rehabilitation treatment.

About the Authors

S. D. Kazakov
Siberian State Medical University
Russian Federation

2, Moscow Trakt, Tomsk, 634050, Russian Federation



E. S. Koroleva
Siberian State Medical University
Russian Federation

2, Moscow Trakt, Tomsk, 634050, Russian Federation



N. G. Brazovskaya
Siberian State Medical University
Russian Federation

2, Moscow Trakt, Tomsk, 634050, Russian Federation



A. A. Zaytsev
Siberian Federal Scientific Clinical Center of Federal Medicobiological Agency
Russian Federation

4, Mira Str., Seversk, 63600, Russian Federation



S. A. Ivanova
Mental Health Research Institute, Tomsk National Research Medical Center (NRMC), Russian Academy of Sciences
Russian Federation

4, Aleutskaya Str., Tomsk, 634014, Russian Federation



V. M. Alifirova
Siberian State Medical University
Russian Federation

2, Moscow Trakt, Tomsk, 634050, Russian Federation



References

1. Kim J., Thayabaranathan T., Donnan G.A., Howard G., Howard V.J., Rothwell P.M., Feigin V., Norrving B., Owolabi M., Pandian J., Liping L., Cadilhac D.A., Thrift A.G. Global stroke statistics 2019. Int. J. Stroke. 2020; 15 (8): 819–838. DOI: 10.1177/1747493020909545.

2. Hatem S.M., Saussez G., della Faille M., Prist V., Zhang X., Dispa D., Bleyenheuft Y. Rehabilitation of motor function after stroke: a multiple systematic review focused on techniques to stimulate upper extremity recovery. Front Hum. Neurosci. 2016; 10: 442. DOI: 10.3389/fnhum.2016.00442.

3. Bernhardt J., Hayward K.S., Kwakkel G., Ward N.S., Wolf S.L., Borschmann K., Krakauer J., Boyd L., Carmichael S.T., Corbett D., Cramer S.C. Agreed definitions and a shared vision for new standards in stroke recovery research: the stroke recovery and rehabilitation roundtable taskforce. Int. J. Stroke. 2017; 12 (5): 444–450. DOI: 10.1177/1747493017711816.

4. Johansson B.B. Current trends in stroke rehabilitation. A review with focus on brain plasticity. Acta Neurol. Scand. 2011; 123 (3): 147–159. DOI: 10.1111/j.1600-0404.2010.01417.x.

5. Mang C.S., Campbell K.L., Ross C.J.D., Boyd L.A. Promoting neuroplasticity for motor rehabilitation after stroke: considering the effects of aerobic exercise and genetic variation on brain-derived neurotrophic factor. Phys. Ther. Dec. 2013; 93 (12): 1707–1716. DOI: 10.2522/ptj.20130053.

6. Гусев Е.И., Мартынов М.Ю., Костенко Е.В. и др. Эффективность семакса при лечении больных на разных стадиях ишемического инсульта. Журнал неврологии и психиатрии им. С.С. Корсакова. 2018; 118 (2-3): 61–68. DOI: 10.17116/jnevro20181183261-68.

7. Рославцева В.В., Салмина А.Б., Прокопенко С.В., Кобаненко И.В., Резвицкая Г.Г. Возможности применения нейротрофического фактора головного мозга в качестве маркера эффективности терапии при дегенеративном, травматическом, ишемическом поражении головного мозга. Неврологический журнал. 2015; 20 (2): 38–46.

8. Chen S.-D., Wu C.-L., Hwang W.-C., Yang D.-I. More Insight into BDNF against neurodegeneration: anti-apoptosis, antioxidation, and suppression of autophagy. International Journal of Molecular Sciences. 2017; 18 (3): 545. DOI: 10.3390/ijms18030545.

9. Guo W., Nagappan G., Lu B. Differential effects of transient and sustained activation of BDNF-TrkB signaling. Developmental Neurobiology. 2018; 78 (7): 647–659. DOI: 10.1002/dneu.22592.

10. Liu P.Z., Nusslock R. Exercise-mediated neurogenesis in the hippocampus via BDNF. Front. Neurosci. 2018; 12: 52. DOI: 10.3389/fnins.2018.00052.

11. Park H., Poo M. Neurotrophin Regulation of neural circuit development and function. Nat. Rev. Neurosci. 2013; 14 (1): 7–23. DOI: 10.1038/nrn3379.

12. Zagrebelsky M., Korte M. Form follows function: BDNF and its involvement in sculpting the function and structure of synapses. Neuropharmacology. 2014; 76: 628–638. DOI: 10.1016/j.neuropharm.2013.05.029.

13. Голубев А.М., Петрова М.В., Гречко А.В., Захарченко В.Е., Кузовлев А.Н., Ершов А.В. молекулярные маркеры ишемического инсульта. Общая реаниматология. 2019; 15 (5): 11–22. DOI: 10.15360/1813-9779-2019-5-11-22.

14. Coleman E.R., Moudgal R., Lang K., Hyacinth H.I., Awosika O.O., Kissela B.M., Feng W. Early rehabilitation after stroke: a narrative review. Current Atherosclerosis Reports. 2017; 19 (12): 59. DOI: 10.1007/s11883-017-0686-6.

15. Королева Е.С., Алифирова В.М., Бразовская Н.Г., Плотников Д.М., Левчук Л.А., Бойко А.С., Запекин С.П., Семененко А.В., Катаева Н.Г., Иванова С.А. Клинико-лабораторная оценка эффективности ранней реабилитации пациентов с инсультом с применением вспомогательных

16. роботизированных механизмов. Бюллетень сибирской медицины. 2019; 18 (4): 55–62. DOI: 10.20538/1682-0363-2019-4-55–62.

17. Walsh J.J., Bentley R.F., Gurd B.J., Tschakovsky M.E. Short-duration maximal and long-duration submaximal effort forearm exercise achieve elevations in serum brain-derived neurotrophic factor. Front. Physiol. 2017; 8: 746. DOI: 10.3389/fphys.2017.00746.

18. Mackay C.P., Kuys S.S., Brauer S.G. The effect of aerobic exercise on brain-derived neurotrophic factor in people with neurological disorders: a systematic review and meta-analysis. Neural Plast. 2017; 2017: 4716197. DOI: 10.1155/2017/4716197.

19. Alcantara C.C., García-Salazar L.F., Silva-Couto M.A., Santos G.L., Reisman D.S., Russo T.L. Post-stroke BDNF concentration changes following physical exercise: a systematic review. Frontiers in Neurology. Front. Neurol. 2018; 9: 637. DOI: 10.3389/fneur.2018.00637.

20. Супонева Н.А., Юсупова Д.Г., Жирова Е.С., Мельченко Д.А., Таратухина А.С., Бутковская А.А., Ильина К.А., Зайцев А.Б.3, Зимин А.А., Клочков А.С., Люкманов Р.Х., Калинкина М.Э., Пирадов М.А., Котов-Смоленский А.М., Хижникова А.Е. Валидация модифицированной шкалы Рэнкина (The Modified Rankin Scale, MRS) в России. Неврология, нейропсихиатрия, психосоматика. 2018; 10 (4): 36–39. DOI: 10.14412/2074-2711-2018-4-36-39.

21. Himi N., Takahashi H., Okabe N., Nakamura N., Shiromoto T., Narita K., Koga T., Miyamoto O. Exercise in the early stage after stroke enhances hippocampal brain-derived neurotrophic factor expression and memory function recovery. J. Stroke Cerebrovasc. Dis. 2016; 25 (12); 2987–2994. DOI: 10.1016/j.strokecerebrovasdis.2016.08.017.

22. Leal G., Bramham C.R., Duarte C.B. BDNF and hippocampal synaptic plasticity. Neurotrophins. 2017; 104: 153–195. DOI: 10.1016/bs.vh.2016.10.004.

23. Kotlęga D., Peda B., Zembroń-Łacny A., Gołąb-Janowska M., Nowacki P. The role of brain-derived neurotrophic factor and its single nucleotide polymorphisms in stroke patients. Neurologia i Neurochirurgia Polska. 2017; 51 (3): 240–246. DOI: 10.1016/j.pjnns.2017.02.008.

24. Walsh J.J., Tschakovsky M.E. Exercise and circulating BDNF: Mechanisms of release and implications for the design of exercise interventions. Applied Physiology, Nutrition, and Metabolism. 2018; 43 (11): 1095–1104. DOI: 10.1139/apnm-2018-0192.

25. Gandolfi M., Smania N., Vella A., Picelli A., Chirumbolo S. Assessed and emerging biomarkers in stroke and training-mediated stroke recovery: state of the art. neural plasticity. Neural Plast. 2017; 2017: 1389475. DOI: 10.1155/2017/1389475.


Review

For citations:


Kazakov S.D., Koroleva E.S., Brazovskaya N.G., Zaytsev A.A., Ivanova S.A., Alifirova V.M. Assessment of serum BDNF levels in complex rehabilitation of patients with ischemic stroke using traditional approaches to the restoration of motor functions. Bulletin of Siberian Medicine. 2021;20(3):38-45. https://doi.org/10.20538/1682-0363-2021-3-38-45

Views: 848


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1682-0363 (Print)
ISSN 1819-3684 (Online)