Influence of a B16/F10 melanoma variant on the Вcl-2 levels in mitochondria in various organs of female mice
https://doi.org/10.20538/1682-0363-2021-3-46-53
Abstract
Aim. To study the Bcl-2 level in mitochondria of various organs in female mice with standard and stimulated growth of an experimental B16/F10 melanoma.
Materials and methods. The study included С57ВL/6 female mice (n = 168). The experimental animals were divided into the following groups: an intact group (n = 21), a group with modelled chronic neuropathic pain (CNP) (n = 21), an M group with B16/F10 melanoma (n = 63), and a CNP + M group (n = 63). The Bcl-2 concentration (ng / mg protein) in mitochondrial samples was determined by ELISA (Thermo Fisher Scientific, Austria). Statistical analysis of the results was carried out using Statistica 10.0.
Results. Compared to the Bcl-2 levels in the intact animals, CNP decreased this parameter in the cardiac mitochondria by 1.3 times, while increasing it by 5.9 times in the skin mitochondria. In the dynamics of standard melanoma growth, the Bcl-2 content changed compared with the corresponding intact values in the mitochondria of the brain, heart, and skin, but did not change in the liver and kidneys. In the mitochondria in melanoma, the Bcl-2 levels were high throughout the entire period of standard tumor growth in comparison with the intact skin. The stimulated melanoma growth in CNP was involving more organs into the pathological process as the tumor was growing. Thus, in comparison with the values in the CNP group, the mitochondrial Bcl-2 levels changed in the heart at week 1; in the heart and skin – at week 2; in the heart, skin, and brain – at week 3. The Bcl-2 levels did not change in the liver and kidney mitochondria. In the mitochondria in the CNP-stimulated melanoma, the Bcl-2 levels were lower than in the skin mitochondria in CNP throughout the entire tumor growth period.
Conclusion. The liver and kidney mitochondria are somewhat Bcl-2 stable in both standard and stimulated tumor growth. It is assumed that different Bcl-2 dynamics in the mitochondria in melanoma depending on the variant of tumor development reflects the modulating effect of CNP and the ability to change the Bcl-2 levels according to the growth phase.
Keywords
About the Authors
O. I. KitRussian Federation
63, 14 Liniya Str., Rostov-on-Don, 344037, Rostov-on-Don, Russian Federation
E. M. Frantsiyants
Russian Federation
63, 14 Liniya Str., Rostov-on-Don, 344037, Rostov-on-Don, Russian Federation
I. V. Neskubina
Russian Federation
63, 14 Liniya Str., Rostov-on-Don, 344037, Rostov-on-Don, Russian Federation
N. D. Cheryarina
Russian Federation
63, 14 Liniya Str., Rostov-on-Don, 344037, Rostov-on-Don, Russian Federation
A. I. Shikhlyarova
Russian Federation
63, 14 Liniya Str., Rostov-on-Don, 344037, Rostov-on-Don, Russian Federation
E. I. Surikova
Russian Federation
63, 14 Liniya Str., Rostov-on-Don, 344037, Rostov-on-Don, Russian Federation
I. V. Kaplieva
Russian Federation
63, 14 Liniya Str., Rostov-on-Don, 344037, Rostov-on-Don, Russian Federation
L. A. Nemashkalova
Russian Federation
63, 14 Liniya Str., Rostov-on-Don, 344037, Rostov-on-Don, Russian Federation
References
1. Gilmore A., King L. Emerging approaches to target mitochondrial apoptosis in cancer cells. F1000Research. 2019; 8 (1000): 1793. DOI: 10.12688/f1000research.18872.1.
2. Fulda S. Smac mimetics to therapeutically target IAP proteins in cancer. Int. Rev. Cell Mol. Biol. 2017; 330: 157–169. DOI: 10.1016/bs.ircmb.2016.09.004.
3. Von Karstedt S., Montinaro A., Walczak H. Exploring the TRAILs less travelled: TRAIL in cancer biology and therapy. Nat. Rev. Cancer. 2017; 17 (6): 352–366. DOI: 10.1038/nrc.2017.28.
4. Badrinath N., Yoo S.Y. Mitochondria in cancer: in the aspects of tumorigenesis and targeted therapy. Carcinogenesis. 2018; 39 (12): 1419–1430. DOI:10.1093/carcin/bgy148.
5. Hanahan D., Weinberg R.A. The hallmarks of cancer. Cell. 2000; 100 (1): 57–70. DOI: 10.1016/S0092-8674(00)81683-9.
6. Youle R.J., Strasser A. The BCL-2 protein family: opposing activities that mediate cell death. Nat. Rev. Mol. Cell Biol. 2008; 9 (1): 47–59. DOI: 10.1038/nrm2308.
7. Vikström I.B., Slomp A., Carrington E.M., Moesbergen L.M., Chang C., Kelly G.L., Glaser S.P., Jansen J.H., Leusen J.H., Strasser A., Huang D.C., Lew A.M., Peperzak V., Tarlinton D.M. MCL-1 is required throughout B-cell development and its loss sensitizes specific B-cell subsets to inhibition of BCL-2 r BCL-XL. Cell Death Dis. 2016; 7 (8): 2345. DOI: 10.1038/cddis.2016.237.
8. Grabow S., Kueh A.J., Ke F., Vanyai H.K., Sheikh B.N., Dengler M.A., Chiang W., Eccles S., Smyth I.M., Jones L.K., De Sauvage F.J., Scott M., Whitehead L., Voss A.K., Strasser F. Subtle changes in the levels of BCL-2 proteins cause severe craniofacial abnormalities. Cell Rep. 2018; 24 (12): 3285–3295. DOI: 10.1016/j.celrep.2018.08.048.
9. Ankers J.M., Awais R., Jones N.A., Boyd J., Ryan S., Adamson A.D., Harper C.V., Bridge L., Spiller D.G., Jackson D.A., Paszek P., Sée V., White M.R. Dynamic NF-κB and E2F interactions control the priority and timing of inflammatory signalling and cell proliferation. eLife. 2016; 5: 10473. DOI: 10.7554/eLife.10473.
10. Schellenberg B., Wang P., Keeble J.A., Rodriguez-Enriquez R., Walker S., Owens T.W., Foster F., Tanianis-Hughes J., Brennan K., Streuli C.H., Gilmore A.P. Bax exists in a dynamic equilibrium between the cytosol and mitochondria to control apoptotic priming. Mol Cell. 2013: 49 (5): 959–971. DOI: 10.1016/j.molcel.2012.12.022.
11. Flusberg D.A., Roux J., Spencer S.L., Sorger P.K. Cells surviving fractional killing by TRAIL exhibit transient but sustainable resistance and inflammatory phenotypes. Mol. Biol. Cell. 2013; 24 (14): 2186–2200. DOI: 10.1091/mbc.e12-10-0737.
12. Gascoigne K.E., Taylor S.S. Cancer cells display profound intra- and interline variation following prolonged exposure to antimitotic drugs. Cancer Cell. 2008; 14 (2): 111–122. DOI: 10.1016/j.ccr.2008.07.002.
13. Кит О.И., Франциянц Е.М., Котиева И.М., и др. Некоторые механизмы повышения злокачественности меланомы на фоне хронической боли у самок мышей. Российский журнал боли. 2017; 2 (53): 14–20.
14. Егорова М.В., Афанасьев С.А. Выделение митохондрий из клеток и тканей животных и человека: Современные методические приемы. Сибирский медицинский журнал. 2011; 26 (1-1): 22–28.
15. Czabotar P.E., Lessene G., Strasser A., Adams J.M. Control of apoptosis by the BCL-2 protein family: implications for physiology and therapy. Nat. Rev. Mol. Cell Biol. 2014; 15 (1): 49–63. DOI: 10.1038/nrm3722.
16. Nakazawa M., Matsubara H., Matsushita Y., Watanabe M., Vo N., Yoshida H., Yamaguchi M., Kataoka T. The human Bcl-2 family member Bcl-rambo localizes to mitochondria and induces apoptosis and morphological aberrations in drosophila. PloS One. 2016; 11 (6): 0157823. DOI: 10.1371/journal.pone.0157823.
17. Cenini G., Lloret A., Cascella R. Oxidative stress in neurodegenerative diseases: from a mitochondrial point of view. Oxidative Medicine and Cellular Longevity. 2019; 2019: 2105607. DOI: 10.1155/2019/2105607.
18. Yin X., Xin H., Mao S., Wu G., Guo L. The role of autophagy in sepsis: protection and injury to organs. Frontiers in Physiology. 2019; (10): 1071. DOI: 10.3389/fphys.2019.01071.
19. Edlich F. BCL-2 proteins and apoptosis: Recent insights and unknowns. Biochemical and Biophysical Research Communications. 2018; 500 (1): 26–34. DOI: 10.1016/j.bbrc.2017.06.190.
20. Wang J., Feng W., Yuan Z., Weber J.D., Zhang Y. DHX33 Interacts with AP-2β to regulate Bcl-2 gene expression and promote cancer cell survival. Molecular and Cellular Biology. 2019; 39 (17): 17–19. DOI: 10.1128/MCB.00017-19.
21. Elkholi R., Renault T.T., Serasinghe M.N., Chipuk J.E. Putting the pieces together: How is the mitochondrial pathway of apoptosis regulated in cancer and chemotherapy? Cancer & Metabolism. 2014; 2: 16. DOI: 10.1186/2049-3002-2-16.
22. Hartman M.L., Czyz M. BCL-w: apoptotic and non-apoptotic role in health and disease. Cell Death & Disease. 2020; 11 (4): 260. DOI: 10.1038/s41419-020-2417-0.
Review
For citations:
Kit O.I., Frantsiyants E.M., Neskubina I.V., Cheryarina N.D., Shikhlyarova A.I., Surikova E.I., Kaplieva I.V., Nemashkalova L.A. Influence of a B16/F10 melanoma variant on the Вcl-2 levels in mitochondria in various organs of female mice. Bulletin of Siberian Medicine. 2021;20(3):46-53. https://doi.org/10.20538/1682-0363-2021-3-46-53