MRI assessment of the abdominal adipose tissue and the state of the abdominal aorta in patients with coronary artery disease: association with metabolic disorders
https://doi.org/10.20538/1682-0363-2021-3-95-104
Abstract
Aim. To evaluate potential associations between quantitative features of visceral and subcutaneous adipose tissue (AT) and anthropometric characteristics of obesity, metabolic disorders, and the state of the abdominal aorta in patients with chronic coronary artery disease (CAD).
Materials and methods. The study included 55 patients (average age 61.2 ± 7.2 years) with chronic CAD. Magnetic resonance imaging (MRI) was performed on a 1.5 T MRI scanner using T2-weighted spin-echo modes. The area and volume of abdominal subcutaneous (SAT) and visceral adipose tissue (VAT) were calculated at the L4–L5 level; the total volumes of abdominal SAT and VAT were determined. Parameters of lipid and carbohydrate metabolism, as well as adipokine profile were studied in the blood serum.
Results. In the course of a multiple linear regression analysis, we detected the independent determinants, which described 95% of the total VAT volume variability and were represented by waist circumference (WC) and serum levels of high-density lipoprotein (HDL) cholesterol and adiponectin. The model was characterized by the significance level p < 0.000001, the residuals of the model were normal. We calculated the coefficients in the model: 1.39 for WC, –0.26 for HDL cholesterol, and –0.19 for adiponectin. We detected a positive correlation between the abdominal aorta (AA) diameter and SAT area at the L4–L5 level (rs = 0.48; p = 0.0014), which does not depend on gender, and reverse correlations between the aorta diameter and glycated hemoglobin (HbA1c) level (rs = –0.40; p = 0.0359) and postprandial glycemia (rs = –0.40; p = 0.0273). The patients with a dilated aorta (group 2), when compared with the patients with a normal aorta diameter (group 1), did not differ in the AT accumulation, but demonstrated decreased levels of HbA1c and postprandial glycemia, which resulted in a smaller number of patients with type 2 diabetes mellitus.
Conclusion. We identified independent determinants of an increase in the total volume of abdominal visceral AT, such as an increase in WC and a decrease in serum adiponectin and HDL cholesterol levels. Results of the study indicate the presence of a link between the AA remodeling, accumulation of subcutaneous AT, and impaired glucose metabolism.
Keywords
About the Authors
N. I. RyumshinaRussian Federation
111a, Kievskaya Str., Tomsk, 634012, Russian Federation
O. A. Koshelskaya
Russian Federation
111a, Kievskaya Str., Tomsk, 634012, Russian Federation
I. V. Kologrivova
Russian Federation
111a, Kievskaya Str., Tomsk, 634012, Russian Federation
O. A. Kharitonova
Russian Federation
111a, Kievskaya Str., Tomsk, 634012, Russian Federation
K. A. Nasekina
Russian Federation
2, Moscow Trakt, Tomsk, 634050, Russian Federation
V. Yu. Ussov
Russian Federation
111a, Kievskaya Str., Tomsk, 634012, Russian Federation
References
1. Liu Z., Wu K.K.L., Jiang X., Xu A., Cheng K.K.Y. The role of adipose tissue senescence in obesity- and ageing-related metabolic disorders. Clin. Sci. (Lond.). 2020; 134 (2): 315–330. DOI: 10.1042/CS20190966.
2. Wajchenberg B.L. Subcutaneous and visceral adipose tissue: their relation to the metabolic syndrome. Endocr. Rev. 2000; 21 (6): 697–738. DOI: 10.1210/edrv.21.6.0415.
3. Freemantle N., Holmes J., Hockey A., Kumar S. How strong is the association between abdominal obesity and the incidence of type 2 diabetes? Int. J. Clin. Pract. 2008; 62 (9): 1391–1396. DOI: 10.1111/j.1742-1241.2008.01805.x.
4. Mandviwala T., Khalid U., Deswal A. Obesity and сardiovascular disease: a risk factor or a risk marker? Curr. Atheroscler. Rep. 2016;18 (5): 21. DOI: 10.1007/s11883-016-0575-4.
5. Lind L., Strand R., Kullberg J., Ahlström H. Cardiovascular-related proteins and the abdominal visceral to subcutaneous adipose tissue ratio. Nutrition, Metabolism & Cardiovascular Diseases. 2021; 31 (2): 532–539. DOI: 10.1016/j.numecd.2020.09.010.
6. Marzetti M., Brunton T., McCreight L., Pearson E., Docherty S., Gandy S.J. Quantitative MRI evaluation of whole abdomen adipose tissue volumes in healthy volunteers – validation of technique and implications for clinical studies. BJR. 2018; 91 (1087): 108720180025. DOI: 10.1259/bjr.20180025.
7. Klingensmith J.D., Elliott A.L., Givan A.H., Faszold Z.D., Mahan C.L., Doedtman A.M, Fernandez-Del-Valle M. Development and evaluation of a method for segmentation of cardiac, subcutaneous, and visceral adipose tissue from Dixon magnetic resonance images. J. Med. Imaging (Bellingham). 2019; 6 (1): 014004. DOI: 10.1117/1.JMI.6.1.014004.
8. Pescatori L.C., Savarino E., Mauri G., Silvestri E., Cariati M., Sardanelli F., Sconfienza L.M. Quantification of visceral adipose tissue by computed tomography and magnetic resonance imaging: reproducibility and accuracy. Radiol. Bras. 2019; 52 (1): 1–6. DOI: 10.1590/0100-3984.2017.0211.
9. Cronin O., Liu D., Bradshaw B., Iyer V., Buttner P., Cunningham M., Walker P.J., Golledge J. Visceral adiposity is not associated with abdominal aortic aneurysm presence and growth. Vascular Medicine. 2014; 19 (4): 272–280. DOI: 10.1177/1358863X14537883.
10. Golledge J., Clancy P., Jamrozik K., Norman P.E. Obesity, adipokines, and abdominal aortic aneurysm: Health in Men study. Circulation. 2007; 116 (20): 2275–2279. DOI: 10.1161/CIRCULATIONAHA.107.717926.
11. Erbel R., Aboyans V., Boileau C., Bossone E., Bartolomeo R.D., Eggebrecht H., Evangelista A., Falk V., Frank H., Gaemperli O., Grabenwöger M., Haverich A., Iung B., Manolis A.J., Meijboom F., Nienaber C.A., Roffi M., Rousseau H., Sechtem U., Sirnes P.A., Allmen R.S., Vrints C.J.; ESC Committee for Practice Guidelines. 2014 ESC Guidelines on the diagnosis and treatment of aortic diseases: Document covering acute and chronic aortic diseases of the thoracic and abdominal aorta of the adult. The Task Force for the Diagnosis and Treatment of Aortic Diseases of the European Society of Cardiology (ESC). Eur. Heart J. 2014; 35 (41): 2873–2926. DOI: 10.1093/eurheartj/ehu281.
12. Ахмеджанов Н.М., Бутрова С.А., Дедов И.И., Звенигородская Л.А., Кисляк О.А., Кошельская О.А., Кузнецова И.В., Кухарчук В.В., Литвин А.Ю., Медведева И.В., Мкртумян А.М., Мычка В.Б., Небиеридзе Д.В., Недогода С.В., Оганов В.Г., Огарков М.Ю., Перепеч Н.Б., Подзолков В.И., Сметник В.П., Сусеков А.В., Титов В.Н., Тюрина Т.В, Фурсов А.Н., Хирманов В.Н, Чазова И.Е., Чукаева И.И., Шестакова М.В., Шубина А.Т. Консенсус российских экспертов по проблеме метаболического синдрома в Российской Федерации: определение, диагностические критерии, первичная профилактика и лечение. Профилактическая медицина. 2010; 13 (5): 27–32.
13. Coolen B.F., Calcagno C., van Ooij P., Fayad Z.A., Strijkers G.J., Nederveen A.J. Vessel wall characterization using quantitative MRI: what’s in a number? MAGMA. 2018; 31 (1): 201–222. DOI: 10.1007/s10334-017-0644-x.
14. Neeland I.J., Ayers C.R., Rohatgi1 A.K., Turer A.T., Berry J.D., Das S.R., Vega G.L., Khera A., McGuire D.K., Grundy S.M., de Lemos J.A. Associations of visceral and abdominal subcutaneous adipose tissue with markers of cardiac and metabolic risk in obese adults. Obesity. 2013; 21 (9): E439–E447. DOI: 10.1002/oby.20135.
15. Груздева О.В., Бородкина Д.А., Дылева Ю.А., Кузьмина А.А., Белик Е.В., Брель Н.К., Каретникова В.Н., Кашталап В.В., Бычкова Е.Е., Барбараш О.Л. Взаимосвязь толщины эпикардиального жира и показателей адипофиброкинового профиля при инфаркте миокарда. Клиническая лабораторная диагностика. 2020; 65 (9): 533–540. DOI: 10.18821/0869-2084-2020-65-9-533-540.
16. Reneau J., Goldblatt M., Gould J., Kindel T., Kastenmeier A., Higgins R., Rengel L.R., Schoyer K., James R., Obi B., Moosreiner A., Nicholson K., Sahoo D., Kidambi S. Effect of adiposity on tissue-specific adiponectin secretion. PLoS One. 2018; 13 (6): e0198889. DOI: 10.1371/journal.pone.0198889.
17. Frederiksen L., Nielsen T.L., Wraae K., Hagen C., Frystyk J., Flyvbjerg A., Brixen K., Andersen M. Subcutaneous rather than visceral adipose tissue is associated with adiponectin levels and insulin resistance in young men. J. Clin. Endocrinol. Metab. 2009; 94 (10): 4010–4015. DOI: 10.1210/jc.2009-0980.
18. Беспалова И.Д., Рязанцева Н.В., Калюжин В.В., Дзюман А.Н., Осихов И.А., Медянцев Ю.А., Клиновицкий И.Ю., Мурашев Б.Ю., Афанасьева Д.С., Бычков В.А. Клинико-морфологические параллели при абдоминальном ожирении. Бюллетень Сибирского отделения Российской академии медицинских наук. 2014; 34 (4): 51–58.
19. Apoloni R.C., Zerati A.E., Wolosker N., Saes G.F., Wolosker M., Curado T., Puech-Leão P., De Luccia N. Analysis of the correlation between central obesity and abdominal aortic diseases. Ann. Vasc. Surg. 2019; 54: 176–184. DOI: 10.1016/j.avsg.2018.06.016.
20. Goldenberg L., Saliba W., Hayeq H., Hasadia R., Zeina A.R. The impact of abdominal fat on abdominal aorta calcification measured on non-enhanced CT. Medicine (Baltimore). 2018; 97 (49): e13233. DOI: 10.1097/MD.0000000000013233.
21. Muenkaew M., Boonyasirinant T., Krittayaphong R. Correlation between aortic stiffness and visceral fat determined by magnetic resonance imaging. J. Med. Assoc. Thai. 2012; 95 (2): S117–S126.
22. Sutton-Tyrrell K., Newman A., Simonsick E.M., Havlik R., Pahor M., Lakatta E., Spurgeon H., Vaitkevicius P. Aortic stiffness is associated with visceral adiposity in older adults enrolled in the study of health, aging, and body composition. Hypertension. 2001; 38 (3): 429–433. DOI: 10.1161/01.hyp.38.3.429.
23. Mzayek F., Wang L.E., Relyea G., Yu X., Terry J.G., Carr J., Hundley G.W., Hall M.E., Correa A. Impact of bdominal Obesity on Proximal and Distal Aorta Wall Thickness in African Americans: The Jackson Heart Study. Obesity (Silver Spring). 2019; 27 (9): 1527–1532. DOI: 10.1002/oby.22563.
24. Polat T.B, Urganci N., Caliskan K.C., Akyildiz B. Correlation of abdominal fat accumulation and stiffness of the abdominal aorta in obese children. J. Pediatr. Endocrinol. Metab. 2008; 21 (11): 1031–1040. DOI: 10.1515/jpem.2008.21.11.1031.
25. Efe D., Aygün F., Acar T., Yildiz M., Gemici K. Investigation of relation between visceral and subcutaneous abdominal fat volumes and calcified aortic plaques via multislice computed tomography. Vascular. 2015; 23 (4): 396–402. DOI: 10.1177/1708538114552012.
26. Reijrink M., de Boer S.A., Spoor D.S., Lefrandt J.D., Lambers Heerspink H.J., Boellaard R., Greuter M.J., Borra R.J.H., Hillebrands J.L., Slart R.H.J.A., Mulder D.J. Visceral adipose tissue volume is associated with premature atherosclerosis in early type 2 diabetes mellitus independent of traditional risk factors. Atherosclerosis. 2019; 290: 87–93. DOI: 10.1016/j.atherosclerosis.2019.09.016.
27. Wang H., Peng D.Q. New insights into the mechanism of low high-density lipoprotein cholesterol in obesity. Lipids Health Dis. 2011; 10: 176. DOI: 10.1186/1476-511X-10-176.
28. Yanai H., Yoshida H. Beneficial effects of adiponectin on glucose and lipid metabolism and atherosclerotic progression: mechanisms and perspectives. International Journal of Molecular Sciences. 2019; 20 (5): 1190. DOI: 10.3390/ijms20051190.
29. Dereziński T., Zozulińska-Ziółkiewicz D., Uruska A., Dąbrowski M. Abdominal aorta diameter as a novel marker of diabetes incidence risk in elderly women. Sci. Rep. 2020; 10 (1): 13734. DOI: 10.1038/s41598-020-70736-1.
Review
For citations:
Ryumshina N.I., Koshelskaya O.A., Kologrivova I.V., Kharitonova O.A., Nasekina K.A., Ussov V.Yu. MRI assessment of the abdominal adipose tissue and the state of the abdominal aorta in patients with coronary artery disease: association with metabolic disorders. Bulletin of Siberian Medicine. 2021;20(3):95-104. https://doi.org/10.20538/1682-0363-2021-3-95-104