Preview

Bulletin of Siberian Medicine

Advanced search

Vascular catheterization in small laboratory animals in biomedical research: technological aspects of the method (review article)

https://doi.org/10.20538/1682-0363-2021-3-168-181

Abstract

 This review addresses the use of vascular catheterization in small laboratory animals in biomedical research with an emphasis on the technological aspects of the method. The use of vascular catheters for blood sampling, drug delivery or biomonitoring improves the quality of the study (reliability and reproducibility of results) and promotes compliance with modern bioethical standards. The key factors that determine the success of the surgery and the entire study are considered with an up-to-date approach. In particular, recommendations are given on the choice of the vessel and the type and size of the catheter, depending on the characteristics of the animal and the study objectives. Catheterization of the external jugular vein of a rat is described in detail, and the fundamental stages of the procedure are the same for all major vessels of rodents. Much attention is paid to potential complications of vascular catheterization, care for catheterized animals in the postoperative period, as well as measures for maintaining the patency of the catheter and its proper functioning. The main limitations for the widespread use of catheterization in research are insufficient qualification of the surgeon and the need to use surgical equipment and microsurgical instruments. 

About the Authors

K. N. Lapin
Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology
Russian Federation

25/2, Petrovka Str., Moscow, 107031, Russian Federation



I. A. Ryzhkov
Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology
Russian Federation

25/2, Petrovka Str., Moscow, 107031, Russian Federation



V. A. Maltseva
Scientific Center “Signal”
Russian Federation

8, Bolshaya Olenya Str., Moscow, 107014, Russian Federation



E. V. Udut
E.D. Goldberg Research Institute of Pharmacology and Regenerative Medicine, Tomsk National Research Medical Center (NRMC), Russian Academy of Sciences
Russian Federation

3, Lenina Av., Tomsk, 634028, Russian Federation



References

1. Dudrick S.J. History of vascular access. JPEN. 2006; 30 (1): S47–S56. DOI: 10.1177/01486071060300S1S47.

2. Kelly L.J. Pig bladders and feather quills: a history of vascular access devices. Br. J. Nurs. 2014; 23(19): S21–S25. DOI: 10.12968/bjon.2014.23.sup19.s21.

3. Bazin H. L’origine des rats de laboratoire, contribution à sa connaissance. Bull. Acad. Vet. Fr. 2001; 154: 145–150. DOI: 10.4267/2042/62578.

4. Franco N.H. Animal Experiments in Biomedical Research: A historical perspective animals. Animals (Basel). 2013; 3: 238–273. DOI: 10.3390/ani3010238.

5. Nossaman B.D., Brittni M.D., Scruggs A., Vaughn B.S., Nossaman E., Subramanyam M.S., Murthy N., Kadowitz P.J. History of right heart catheterization: 100 years of experimentation and methodology development. Cardiol. Rev. 2010; 18 (2): 94–101. DOI: 10.1097/CRD.0b013e3181ceff67.

6. Zerati A.E., Wolosker N., de Luccia N., Puech-Leão P. Totally implantable venous catheters: history, implantation technique and complications. J. Vasc. Bras. 2017; 16 (2): 128–139. DOI: 10.1590/1677-5449.008216.

7. Park A.Y., Plotsky P.M., Pham T.D., Pacak K., Wynne B.M., Wall S.M., Lazo-Fernandez Y. Blood collection in unstressed, conscious, and freely moving mice through implantation of catheters in the jugular vein: a new simplified protocol. Physiol. Rep. 2018; 6 (21): e13904. DOI: 10.14814/phy2.13904.

8. Aske K.C., Waugh C.A. Expanding the 3R principles: more rigour and transparency in research using animals. EMBO Rep. 2017; 18 (9): 1490–1492. DOI: 10.15252/embr.201744428.

9. Grouzmann E., Cavadas C., Grand D.,·Moratel M., Aubert·J.-F., Brunner H.R., Mazzolai L. Blood sampling methodology is crucial for precise measurementof plasma catecholamines concentrations in mice. Pflugers Arch. 2003; 447: 254–258. DOI: 10.1007/s00424-003-1140-x.

10. Vahl T.P., Ulrich-Lai Y.M., Ostrander M.M., Dolgas C.M., Elfers E.E., Seeley R.J., D’Alessio D.A., Herman J.P. Comparative analysis of ACTH and corticosterone sampling methods in rats. Am. J. Physiol. Endocrinol. Metab. 2005; 289 (5): E823–E828. DOI: 10.1152/ajpendo.00122.2005.

11. Karim N., Sanowar S. Jugular vein cannulation in rats – a mini review. Canadian Journal of Pure and Applied Sciences. 2009; 3 (3): 929–935.

12. Pacher P., Nagayama T., Mukhopadhyay P., Bátkai S., Kass D.A. Measurement of cardiac function using pressure – volume conductance catheter technique in mice and rats. Nat. Protoc. 2008; 3 (9): 1422–1434. DOI: 10.1038/nprot.2008.138.

13. Feng J., Fitz Y., Li Y., Fernandez M., Puch I.C., Wang D., Pazniokas S., Bucher B., Cui X., Solomon S.B. Catheterization of the carotid artery and jugular vein to perform hemodynamic measures,infusions and blood sampling in a conscious rat model. J. Vis. Exp. 2015; 95: 51881. DOI: 10.3791/51881.

14. Segreti J.A., Polakowski J.S., Blomme E.A., King A.J. Simultaneous measurement of arterial and left ventricular pressure in conscious freely moving rats by telemetry. J. Pharmacol. Toxicol. Methods. 2016; 79: 23–33. DOI: 10.1016/j.vascn.2016.01.003.

15. Zhang X.D., Pechter D., Yang L., Ping X., Yao Z., Zhang R., Shen X., Li N.X., Connick J., Nawrocki A.R., Chakravarthy M., Li C. Decreased complexity of glucose dynamics preceding the onset of diabetes in mice and rats. PLoS One. 2017; 12 (9): e0182810. DOI: 10.1371/journal.pone.0182810.

16. Bogdan S., Luca V., Ober C., Melega I., Pestean C., Codea R., Oana L. Comparison among different methods for blood pressure monitoring in rats: literature review. Bull. Univ. Agric. Sci. Vet. Med. Cluj Napoca. 2019; 76 (1): 5–19. DOI: 10.15835/buasvmcn-vm:2019.0007.

17. Higgins C. Lactate measurement: arterial versus venous blood sampling. Retrieved from Acutecaretesting. Org. 2017. URL: https://acutecaretesting.org/en/articles/lactate-measurement-arterial-versus-venous-blood-sampling

18. Руководство по проведению доклинических исследований лекарственных средств. Ч. 1; под ред. А.Н. Миронова. М.: Гриф и К, 2012: 944.

19. Moureau N. Vessel health and preservation: the right approach for vascular access. Springer Open, 2019: 303. DOI: 10.1007/978-3-030-03149-7_23.

20. Jacobs B.R. Central venous catheter occlusion and thrombosis. Crit. Care Clin. 2003; 19 (3): 489–514. DOI: 10.1016/s0749-0704(03)00002-2.

21. Galloway S., Bodenham A. Long-term central venous access. Br. J. Anaesth. 2004; 92 (5): 722–734. DOI: 10.1093/bja/aeh109.

22. Francolini I., Piozzi A. Antimicrobial polyurethanes for intravascular medical devices. In Book: Advances in polyurethane biomaterials; 1st ed., eds. Cooper S.L., Guan J. Cambridge, Massachusetts: Woodhead Publishing, 2016: 349–385. DOI: 10.1016/b978-0-08-100614-6.00012-3.

23. Neoh K.G., Li M., Kang E.-T., Chiong E., Tambyah P.A. Surface modification strategies for combating catheter-related complications: recent advances and challenges. J. Mater. Chem. B. 2017; 5: 2045–2067. DOI: 10.1039/c6tb03280j.

24. Teilmann A.C., Falkenberg M.K., Hau J., Abelson K.S.P. Comparison of silicone and polyurethane catheters for the catheterization of small vessels in mice. Lab. Anim. 2014; 43 (11): 397–403. DOI: 10.1038/laban.570.

25. Xu L.-C., Siedlecki C.A. Antibacterial polyurethanes. In Book: Advances in polyurethane biomaterials; 1st ed., eds. Cooper S.L., Guan J. Cambridge, Massachusetts: Woodhead Publishing, 2016: 247–284. DOI: 10.1016/b978-0-08-100614-6.00009-3.

26. GunaratnamG., Spengler C., Trautmann S., Jung P., Mischo J., Wieland B., Metz C., Sören B.L., Hannig M., Jacobs K., Bischof M. Human blood plasma factors affect the adhesion kinetics of Staphylococcus aureus to central venous catheters. Sci. Rep. 2020; 10 (1): 20992. DOI: 10.1038/s41598-020-77168-x.

27. Flecknell P.A. Laboratory animal anaesthesia; 3rd ed. London: Academic Press, 2009: 304. DOI: 10.1016/B978-0-12-369376-1.X0001-9.

28. Heiser A., Liu J.H.K. Rat jugular vein and carotid artery catheterization for acute survival studies. New York: Springer, 2007: 116. DOI: 10.1007/0-387-49416-2.

29. Uhlig C., Krause H., Koch T., De Abreu M.G., Spieth P.M. Anesthesia and Monitoring in Small Laboratory Mammals Used in Anesthesiology, Respiratory and Critical Care Research: A Systematic Review on the Current Reporting in Top-10 Impact Factor Ranked Journals. PLoS One. 2015; 10 (8): e0134205. DOI: 10.1371/journal.pone.0134205.

30. Manual of stroke models in rat; 1sted., ed. Wang-Fischer Y. Boca Raton: CRC Press; 2009: 352. DOI: 10.1201/9781420009521.

31. Allavena R.E., West H., Gale J., Debre M. Pathological and clinical analysis of vascular catheterization models in rats, with exploration of interventions to improve clinical tolerance. Toxicol. Pathol. 2016; 44 (8): 1095–1104. DOI: 10.1177/0192623316666197

32. Матвеева Е.Ю., Власенко А.В., Яковлев В.Н., Алексеев В.Г. Инфекционные осложнения катетеризации центральных вен. Общая реаниматология. 2011; VII (5): 67–74. DOI: 10.15360/1813-9779-2011-5-67.

33. Mendoza G., Regiel-Futyra A., Tamayo A., Monzon M., Irusta S., De Gregorio M.A., Kyzioł A., Arruebo M. Chitosan-based coatings in the prevention of intravascular catheter-associated infections. J. Biomater. Appl. 2017; 32 (6): 725–737. DOI: 10.1177/0885328217739199.

34. Viola G.M., Rosenblatt J., Raad I.I. Drug eluting antimicrobial vascular catheters: progress and promise. Adv. Drug Deliv. Rev. 2017; 112: 35–47. DOI: 10.1016/j.addr.2016.07.011.

35. Yang J., Maarek J.-M. I., Holschneider D.P. In vivo quantitative assessment of catheter patency in rats. Lab. Anim. 2005; 39 (3): 259–268. DOI: 10.1258/0023677054307033.

36. Fonseca U.N.K., Nielsen S.G., Hau J., Hansen A.K. Permanent catheterization of the carotid artery induces kidney infection and inflammation in the rat. Lab. Anim. 2010; 44: 46–53. DOI: 10.1258/la.2009.008122.

37. Teilmann A.C., Rozell B., Kalliokoski O., Hau J., Abelson K.S.P. Carotid catheterization and automated blood sampling induce systemic IL-6 secretion and local tissue damage and inflammation in the heart, kidneys, liver and salivary glands in NMRI mice. PLoS One. 2016; 11 (11): e0166353. DOI: 10.1371/journal.pone.0166353.

38. López-Briz E., Garcia V.R., Cabello J.B., Bort-Martí S., Sanchis R.C., Burls A. Heparin versus 0.9% sodium chloride locking for prevention of occlusion in central venous catheters in adults. Cochrane Database Syst. Rev. 2018; 7 (7): CD008462.DOI: 10.1002/14651858.CD008462.pub3.

39. Goossens G.A. Flushing and locking of venous catheters: available evidence and evidence deficit. Nurs. Res. Pract. 2015; 2015: 985686. DOI: 10.1155/2015/98568.

40. De Luca T., Szilágyi K.L., Hargreaves K.A., Collins K.S., Benson E.A. Improving the patency of jugular vein catheters in sprague – dawley rats by using an antiseptic nitrocellulose coating. J. Am. Assoc. Lab. Anim. Sci. 2018; 57 (5): 520–528. DOI: 10.30802/aalas-jaalas-18-000017.

41. Mermel L.A., Alang N. Adverse effects associated with ethanol catheter locksolutions: a systematic review. J. Antimicrob. Chemother. 2014; 69: 2611–2619. DOI: 10.1093/jac/dku182.

42. Rosenblatt J., Reitzel R.A., Vargas-Cruz N., Chaftari A.-M., Hachem R., Raad I.I. Comparative efficacies of antimicrobial catheter lock solutions for fungal biofilm eradication in an vitro model of catheter-related fungemia. J. Fungi (Basel). 2017; 3 (1): 7. DOI: 10.3390/jof3010007.

43. Chandra J., Long L., Isham N., Mukherjee P.K., DiSciullo G., Appelt K., Ghannoum M.A. In vitro and in vivo activity of a novel catheter lock solution against bacterial and fungal biofilms. Antimicrob. Agents Chemother. 2018; 62 (8): e00722–18. DOI: 10.1128/aac.00722-18.

44. Hernández M.J., Soriano A., Filella X., Calvo M., Coll E., Rebled J.M., Poch E., Graterol F., Compte M.T., Maduell F., Fontsere N. Impact of locking solutions on conditioning biofilm formation in tunnelled haemodialysis catheters and inflammatory response activation. J. Vasc. Access. 2020; 21: 1129729820942040. DOI: 10.1177/1129729820942040.

45. Tong C., Peng X., Hu H., Wang Z., Zhou H. The effect of different flushing methods in a short peripheral catheter. Acta Cir. Bras. 2019; 34 (8): е201900804. DOI: 10.1590/s0102-865020190080000004.

46. Mitchell M.D., Anderson B.J., Williams K., Umscheid C.A. Heparin flushing and other interventions to maintain patency of central venous catheters: a systematic review. J. Adv. Nurs. 2009; 65(10): 2007–2021. DOI: 10.1111/j.1365-2648.2009.05103.x.

47. Ueda Y., Odunayo A., Mann F.A. Comparison of heparinized saline and 0.9% sodium chloride for maintaining peripheral intravenous catheter patency in dogs. J. Vet. Emerg. Crit. Care (San Antonio). 2013; 23 (5): 517–522. DOI: 10.1111/vec.12093.

48. Dos Santos E.J.F., Nunes M.M.J.C., Cardoso D.F.B., Apóstolo J.L.A., Queirós P.J.P., Rodrigues M.A. Effectiveness of heparin versus 0.9% saline solution in maintaining the permeability of central venous catheters: a systematic review. Rev. Esc. Enferm. USP. 2015; 49 (6): 995–1003. DOI: 10.1590/s0080-623420150000600017.

49. Vose J., Odunayo A., Price J.M., Daves M., Schildt J.C., Tolbert M.K. Comparison of heparinized saline and 0.9% sodium chloride for maintaining central venous catheter patency in healthy dogs. Peer J. 2019; 7: e7072. DOI: 10.7717/peerj.7072.


Review

For citations:


Lapin K.N., Ryzhkov I.A., Maltseva V.A., Udut E.V. Vascular catheterization in small laboratory animals in biomedical research: technological aspects of the method (review article). Bulletin of Siberian Medicine. 2021;20(3):168-181. https://doi.org/10.20538/1682-0363-2021-3-168-181

Views: 1154


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1682-0363 (Print)
ISSN 1819-3684 (Online)