Preview

Bulletin of Siberian Medicine

Advanced search

Features of the level of matrix metalloproteinase-2, -3, -9 and tissue inhibitors of metalloproteinases-1, -2, -3, -4 in the aqueous humor of patients with primary open-angle glaucoma

https://doi.org/10.20538/1682-0363-2021-4-86-92

Abstract

Aim. To study the content of matrix metalloproteinase (MMP)-2, -3, -9 and tissue inhibitors of metalloproteinases (TIMPs) -1, -2, -3, -4 in the aqueous humor of patients with moderate primary open-angle glaucoma (POAG).

Materials and methods. The experimental group included 47 patients with verified moderate primary open-angle glaucoma. The control group consisted of 26 patients with uncomplicated cataract. The levels of MMP-2, -3, -9 were determined with Luminex Performance Human MMP Magnetic Panel 3-plex kit (R&D Systems, USA), the concentration of TIMPs-1, -2, -3, - 4 was determined with the Human TIMP Magnetic Luminex Performance Assay 4-plex kit (R&D Systems, USA). The study was carried out using flow-through field fluorometry on a Bio-Plex 200 double-beam laser analyzer (Bio-Rad, USA).

Results. The study showed a statistically significant increase in the levels of matrix metalloproteinase-2 and tissue inhibitors of matrix metalloproteinases-1, -2, -3, -4 in the aqueous humor of patients with moderate POAG compared with patients with uncomplicated cataract.

Conclusion. The obtained data on high concentrations and imbalance in the levels of matrix metalloproteinases and their tissue inhibitors in the aqueous humor of patients with moderate POAG confirm the role of local inflammation, as well as impairments in the structure of the extracellular matrix and its remodeling in the mechanisms of development of this pathology. 

About the Authors

V. V. Chernykh
S. Fyodorov Eye Microsurgery Federal State Institution, Novosibirsk Branch
Russian Federation

10, Kolkhidskaya Str., Novosibirsk, 630096



V. I. Konenkov
Research Institute of Clinical and Experimental Lymphology – a branch of the Federal Research Center “Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences”
Russian Federation

2, Timakova Str., Novosibirsk, 630117



O. V. Ermakova
S. Fyodorov Eye Microsurgery Federal State Institution, Novosibirsk Branch
Russian Federation

10, Kolkhidskaya Str., Novosibirsk, 630096



N. B. Orlov
Research Institute of Clinical and Experimental Lymphology – a branch of the Federal Research Center “Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences”
Russian Federation

2, Timakova Str., Novosibirsk, 630117



A. N. Trunov
S. Fyodorov Eye Microsurgery Federal State Institution, Novosibirsk Branch; Federal Research Center for Fundamental and Translational Medicine of the Siberian Branch of the Russian Academy of Sciences
Russian Federation

10, Kolkhidskaya Str., Novosibirsk, 630096;

2, Timakova Str., Novosibirsk, 630117



References

1. Егоров Е.А., Алексеев В.Н. Патогенез и лечение первичной открытоугольной глаукомы. М.: ГЭОТАР-Медиа, 2017: 224.

2. Stevens G.A., White R.A., Flaxman S.R., Price H., Jonas J.B., Keeffe J., Leasher J., Naidoo K., Pesudovs K., Resnikoff S., Taylor H., Bourne R.R.; Vision Loss Expert Group. Global prevalence of visual impairment and blindness: magnitude and temporal trends, 1990–2010. Ophthalmology. 2013; 120 (12): 2377–2384. DOI: 10.1016/j.ophtha.2013.05.025.

3. Tham Y.C., Li X., Wong T.Y., Quigley H.A., Aung T., Cheng C.Y. Global prevalence of glaucoma and projections of glaucoma burden through 2040: a systematic review and meta-analysis. Ophthalmology. 2014; 121: 2081–2090. DOI: 10.1016/j.ophtha.2014.05.013.

4. Bourne R.R., Taylor H.R., Flaxman S.R., Keeffe J., Leasher J., Naidoo K., Pesudovs K., White R.A., Wong T.Y., Resnikoff S., Jonas J.B. Vision loss expert group of the global burden of disease study. Number of people blind or visually impaired by glaucoma worldwide and in world regions 1990–2010: A meta-analysis. PLoS One. 2016; 11 (10): e0162229. DOI: 10.1371/journal.pone.0162229.

5. Sihota R., Goyal A., Kaur J., Gupta V., Nag T.C. Scanning electron microscopy of the trabecular meshwork: understanding the pathogenesis of primary angle closure glaucoma. Indian. J. Ophthalmol. 2012; 60 (3): 183–188. DOI: 10.4103/0301-4738.95868.

6. Huang A.S., Mohindroo C., Weinreb R.N. Aqueous humor outflow structure and function imaging. At the bench and bedside: A Review. J. Clin. Exp. Ophthalmol. 2016; 7 (4): 578. DOI: 10.4172/2155-9570.1000578.

7. Song M.M., Lei Y., Wu J.H., Sun X.H. The progress of studies on aqueous humor dynamics abnormality induced by trabecular meshwork and Schlemm canal endothelial cell senescence and its relation with glaucoma. Zhonghua Yan Ke Za Zhi. 2017; 53 (11): 868–873. DOI: 10.3760/cma.j.issn.0412-4081.2017.11.014.

8. Wang K., Read A.T., Sulchek T., Ethier C.R. Trabecular meshwork stiffness in glaucoma. Exp. Eye. Res. 2017; 158: 3–12. DOI: 10.1016/j.exer.2016.07.011.

9. Черных В.В., Бгатова Н.П., Орлов Н.Б., Ермакова О.В., Трунов А.Н. Местный воспалительный процесс как возможное проявление нарушений увеолимфатического оттока внутриглазной жидкости при глаукоме. Часть 2. Национальный журнал глаукома. 2018; 17 (2): 311. DOI: 10.25700/NJG.2018.02.01.

10. Kokubun T., Tsuda S., Kunikata H., Yasuda M., Himori N., Kunimatsu-Sanuki S., Maruyama K., Nakazawa T. Characteristic profiles of inflammatory cytokines in the aqueous humor of glaucomatous eyes. Ocul. Immunol. Inflamm. 2018; 26 (8): 1177–1188. DOI: 10.1080/09273948.2017.1327605.

11. Khalef N., Labib H., Helmy H., El Hamid M.A., Moemen L, Fahmy I. Levels of cytokines in the aqueous humor of eyes with primary open angle glaucoma, pseudoexfoliation glaucoma and cataract. Electron Physician. 2017; 9 (2): 3833–3837. DOI: 10.19082/3833.

12. Pantalon A., Obadă O., Constantinescu D., Feraru C., Chiseliţă D. Inflammatory model in patients with primary open angle glaucoma and diabetes. Int. J. Ophthalmol. 2019; 12 (5): 795–801. DOI: 10.18240/ijo.2019.05.15.

13. Черных В.В., Коненков В.И., Ермакова О.В., Орлов Н.Б., Обухова О.О., Еремина А.В., Трунов А.Н. Содержание цитокинов и факторов роста во внутриглазной жидкости у пациентов с первичной открытоугольной глаукомой. Бюллетень сибирской медицины. 2019; 18 (1): 257–265. DOI: 10.20538/1682-0363-2019-1-257-265.

14. Ten Berge J.C., Fazil Z., Van Den Born I., Wolfs R.C.W., Schreurs M.W.J., Dik W.A., Rothova A. Intraocular cytokine profile and autoimmune reactions in retinitis pigmentosa, age-related macular degeneration, glaucoma and cataract. Acta Ophthalmol. 2019; 97 (2): 185–192. DOI: 10.1111/aos.13899.

15. Cui N., Hu M., Khalil R.A. Biochemical and biological attributes of matrix metalloproteinases. Prog. Mol. Biol. Transl. Sci. 2017; 147: 173. DOI: 10.1016/bs.pmbts.2017.02.005.

16. Chen Q., Jin M., Yang F., Zhu J., Xiao Q., Zhang L. Matrix metalloproteinases: inflammatory regulators of cell behaviors in vascular formation and remodeling. Mediators Inflamm. 2013; 2013: 928315. DOI: 0.1155/2013/928315.

17. Nissinen L., Kähäri V.M. Matrix metalloproteinases in inflammation. Biochim. Biophys. Acta. 2014; 1840 (8): 2571–2580. DOI: 10.1016/j.bbagen.2014.03.007. 18. Arpino V., Brock M., Gill S.E. The role of TIMPs in regulation of extracellular matrix proteolysis. Matrix Biol. 2015; 44–46: 247–254. DOI: 10.1016/j.matbio.2015.03.005.

18. Robert S., Gicquel T., Victoni T., Valença S., Barreto E., Bailly-Maître B., Boichot E., Lagente V. Involvement of matrix metalloproteinases (MMPs) and inflammasome pathway in molecular mechanisms of fibrosis. Biosci. Rep. 2016; 36 (4): e00360. DOI: 10.1042/BSR20160107.

19. Laronha H., Caldeira J. Structure and function of human matrix metalloproteinases. Cells. 2020; 9 (5): 1076. DOI: 10.3390/cells9051076.

20. Singh M., Tyagi S.C. Metalloproteinases as mediators of inflammation and the eyes: molecular genetic underpinnings governing ocular pathophysiology. Int. J. Ophthalmol. 2017; 10 (8): 1308–1318. DOI: 10.18240/ijo.2017.08.20.

21. Roupakia E., Markopoulos G.S., Kolettas E. IL-12-mediated transcriptional regulation of matrix metalloproteinases. Biosci. Rep. 2018; 38 (3). DOI: BSR20171420. 10.1042/BSR20171420.

22. Singh S., Maniakis-Grivas G., Singh U.K., Asher R.M., Mauri F., Elkington P.T., Friedland J.S. Interleukin-17 regulates matrix metalloproteinase activity in human pulmonary tuberculosis. J. Pathol. 2018; 244 (3): 311–322. DOI: 10.1002/path.5013.

23. Zhang J.F., Wang G.L., Zhou Z.J., Fang X.Q., Chen S., Fan S.W. Expression of matrix metalloproteinases, tissue Inhibitors of metalloproteinases, and Interleukins in vertebral cartilage endplate. Orthop. Surg. 2018; 10 (4): 306–311. DOI: 10.1111/os.12409.

24. De Groef L., Van Hove I., Dekeyster E., Stalmans I., Moons L. MMPs in the trabecular meshwork: promising targets for future glaucoma therapies? Invest. Ophthalmol. Vis. Sci. 2013; 54 (12): 7756–7763. DOI: 10.1167/iovs.13-13088.

25. De Groef L., Van Hove I., Dekeyster E., Stalmans I., Moons L. MMPs in the neuroretina and optic nerve: modulators of glau coma pathogenesis and repair? Invest. Ophthalmol. Vis. Sci. 2014; 55 (3): 1953–1964. DOI: 10.1167/iovs.13-13630.

26. Nga A.D., Yap S.L., Samsudin A., Abdul-Rahman P.S. Matrix metalloproteinases and tissue inhibitors of metalloproteinases in the aqueous humour of patients with primary angle closure glaucoma – a quantitative study. BMC Ophthalmol. 2014; 14: 33. DOI: 10.1186/1471-2415-14-33.

27. Sahay P., Rao A., Padhy D., Sarangi S., Das G., Reddy M.M., Modak R. Functional activity of matrix metalloproteinases 2 and 9 in tears of patients with glaucoma. Invest. Ophthalmol. Vis. Sci. 2017; 58 (6): 106–113. DOI: 10.1167/iovs.17-21723.

28. Markiewicz L., Pytel D., Mucha B., Szymanek K., Szaflik J., Szaflik J.P., Majsterek I. Altered expression levels of MMP1, MMP9, MMP12, TIMP1, and IL-1β as a risk factor for the elevated IOP and optic nerve head damage in the primary open-angle glaucoma patients. Biomed. Res. Int. 2015; 2015: 812503. DOI: 10.1155/2015/812503.

29. Zaleska-Żmijewska A., Strzemecka E., Wawrzyniak Z.M., Szaflik J.P. Extracellular MMP-9-based assessment of ocular surface inflammation in patients with primary open-angle glaucoma. J. Ophthalmol. 2019; 2019: 1240537. DOI: 10.1155/2019/1240537.

30. Ashworth Briggs E.L., Toh T., Eri R., Hewitt A.W., Cook A.L. TIMP1, TIMP2, and TIMP4 are increased in aqueous humor from primary open angle glaucoma patients. Mol. Vis. 2015; 21: 1162–1172.

31. Fountoulakis N., Labiris G., Aristeidou A., Katsanos A., Tentes I., Kortsaris A., Kozobolis V.P. Tissue inhibitor of metalloproteinase 4 in aqueous humor of patients with primary open angle glaucoma, pseudoexfoliation syndrome and pseudoexfoliative glaucoma and its role in proteolysis imbalance. BMC Ophthalmol. 2013 13: 69. DOI: 10.1186/1471-2415-13-69.


Review

For citations:


Chernykh V.V., Konenkov V.I., Ermakova O.V., Orlov N.B., Trunov A.N. Features of the level of matrix metalloproteinase-2, -3, -9 and tissue inhibitors of metalloproteinases-1, -2, -3, -4 in the aqueous humor of patients with primary open-angle glaucoma. Bulletin of Siberian Medicine. 2021;20(4):86-92. https://doi.org/10.20538/1682-0363-2021-4-86-92

Views: 644


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1682-0363 (Print)
ISSN 1819-3684 (Online)