Preview

Бюллетень сибирской медицины

Расширенный поиск

Современные методы радионуклидной диагностики опухолей и неопухолевой патологии головного мозга

https://doi.org/10.20538/1682-0363-2021-4-131-142

Аннотация

В обзоре обсуждается мировой опыт применения методов ядерной медицины в диагностике опухолей головного мозга и его неопухолевых изменений. Рассматриваются основные группы применяемых сегодня радиофармацевтических препаратов (РФП) для визуализации злокачественных опухолей головного мозга, диагностики когнитивных нарушений и нарушений системы нейротрансмиссии методом однофотонной эмиссионной компьютерной томографии и позитронно-эмиссионной томографии.

В сравнительном аспекте освещаются современные подходы к применению методов радионуклидной диагностики в нейроонкологии и неврологии, отражаются основные тенденции в производстве новых, более специфичных РФП для визуализации опухолей головного мозга различной степени злокачественности и диагностики неопухолевых заболеваний мозга. Обсуждаются преимущества и недостатки применяемых сегодня методик и РФП для визуализации заболеваний центральной нервной системы в зависимости от клинической ситуации и конкретных диагностических задач.

Представлены консолидированные рекомендации ведущих научных школ нейроонкологии по применению методов ядерной медицины у пациентов с опухолями головного мозга на этапах лечения и динамического наблюдения. Рассмотрен опыт отечественных научных школ в разработке РФП для нейроонкологии. Освещены особенности разработки и применения новых РФП у пациентов с опухолями головного мозга и нейродегенеративных заболеваний. Обзор выполнен на анализе литературы, входящей в базы данных Scopus, Web of Science, MedLine, The Cochrane Library, EMBASE, Global Health и РИНЦ. 

Об авторах

Р. В. Зельчан
Научно-исследовательский институт (НИИ) онкологии, Томский национальный исследовательский медицинский центр (НИМЦ) Российской академии наук; Национальный исследовательский Томский политехнический университет (НИ ТПУ)
Россия

канд. мед. наук, ст. науч. сотрудник, отделение радионуклидной диагностики, 634009, г. Томск, пер. Кооперативный, 5;

634050, г. Томск, пр. Ленина, 30



А. А. Медведева
Научно-исследовательский институт (НИИ) онкологии, Томский национальный исследовательский медицинский центр (НИМЦ) Российской академии наук
Россия

канд. мед. наук, ст. науч. сотрудник, отделение радионуклидной диагностики, 

634009, г. Томск, пер. Кооперативный, 5



А. Н. Рыбина
Научно-исследовательский институт (НИИ) онкологии, Томский национальный исследовательский медицинский центр (НИМЦ) Российской академии наук
Россия

канд. мед. наук, врач-рентгенолог, отделение радионуклидной диагностики, 

634009, г. Томск, пер. Кооперативный, 5



О. Д. Брагина
Научно-исследовательский институт (НИИ) онкологии, Томский национальный исследовательский медицинский центр (НИМЦ) Российской академии наук; Национальный исследовательский Томский политехнический университет (НИ ТПУ) 634050, г. Томск, пр. Ленина, 30
Россия

канд. мед. наук, ст. науч. сотрудник, отделение радионуклидной диагностики,

 

634050, г. Томск, пр. Ленина, 30

 



А. И. Рябова
Научно-исследовательский институт (НИИ) онкологии, Томский национальный исследовательский медицинский центр (НИМЦ) Российской академии наук
Россия

канд. мед. наук, науч. сотрудник, отделение опухолей головы и шеи,

634009, г. Томск, пер. Кооперативный, 5



В. И. Чернов
Научно-исследовательский институт (НИИ) онкологии, Томский национальный исследовательский медицинский центр (НИМЦ) Российской академии наук; Национальный исследовательский Томский политехнический университет (НИ ТПУ)
Россия

д-р мед. наук, профессор, зам. директора по научной и инновационной работе, 634009, г. Томск, пер. Кооперативный, 5;

зам. директора по научной и инновационной работе зав. отделением радионуклидной диагностики, 634050, г. Томск, пр. Ленина, 30



Е. Л. Чойнзонов
Научно-исследовательский институт (НИИ) онкологии, Томский национальный исследовательский медицинский центр (НИМЦ) Российской академии наук
Россия

д-р мед. наук, профессор, акад. РАН, директор,

634009, г. Томск, пер. Кооперативный, 5



Список литературы

1. Katsanos A.H., Alexiou G.A., Fotopoulos A.D., Jabbour P., Kyritsis A.P., Sioka C. Performance of 18F-FDG, 11C-Methionine, and 18F-FET PET for Glioma Grading: A Meta-analysis. Clin. Nucl. Med. 2019; 44 (11): 864–869. DOI: 10.1097/RLU.0000000000002654.

2. Horky L.L., Treves S.T. PET and SPECT in brain tumors and epilepsy. Neurosurg. Clin. N. Am. 2011; 22 (2): 169–1884. DOI: 10.1016/j.nec.2010.12.003. 3. Roelcke U. Imaging brain tumors with PET, SPECT, and ultrasonography. Handb. Clin. Neurol. 2012; 104: 135–142. DOI: 10.1016/B978-0-444-52138-5.00010-4.

3. Inubushi M., Tatsumi M., Yamamoto Y. et al. European research trends in nuclear medicine. Ann. Nucl. Med. 2018; 32 (9): 579–582. DOI: 10.1007/S12149-018-1303-7.

4. Lotan E., Friedman K.P., Davidson T., Shepherd T.M. Brain 18F-FDG-PET: Utility in the Diagnosis of Dementia and Epilepsy. Isr. Med. Assoc. J. 2020; 22 (3): 178–184.

5. Karpuz M., Silindir-Gunay M., Ozer A.Y. Current and future approaches for effective cancer imaging and treatment. Cancer Biother. Radiopharm. 2018; 33 (2): 39–51. DOI: 10.1089/CBR.2017.2378.

6. Terada H., Kamata N. Contribution of the combination of (201)Tl SPECT and (99m)T(c)O(4)(–) SPECT to the differential diagnosis of brain tumors and tumor-like lesions. A preliminary report. J. Neuroradiol. 2003; 30 (2): 91–94.

7. Le Jeune F.P., Dubois F., Blond S., Steinling M. Sestamibi technetium-99m brain single-photon emission computed tomography to identify recurrent glioma in adults: 201 studies. J. Neurooncol. 2006; 77 (2): 177–183. DOI: 10.1007/s11060-005-9018-8.

8. Cecchin D., Chondrogiannis S., Della Puppa A. et al. Presurgical 99mTc-sestamibi brain SPET/CT versus SPET: a comparison with MRI and histological data in 33 patients with brain tumours. Nucl. Med. Commun. 2009; 30 (9): 660–668. DOI: 10.1097/MNM.0b013e32832ea9b7.

9. Shibata Y., Yamamoto T., Takano S. et al. Direct comparison of thallium-201 and technetium-99m MIBI SPECT of a glioma by receiver operating characteristic analysis. J. Clin. Neurosci. 2009; 16 (2): 264–269. DOI: 10.1016/J.JOCN.2008. 04.010.

10. Choi J.Y., Kim S.E., Shin H.J., Kim B.T., Kim J.H. Brain tumor imaging with 99mTc-tetrofosmin: comparison with 201Tl, 99mTc-MIBI, and 18F-fluorodeoxyglucose. J. Neurooncol. 2000; 46 (1): 63–70. DOI: 10.1023/a:1006391701818.

11. Alexiou G.A., Fotopoulos A.D., Tsiouris S., Voulgaris S., Kyritsis A.P. 99mTc-tetrofosmin SPECT for the evaluation of cerebral lesions. Eur. J. Nucl. Med. Mol. Imaging. 2010; 37 (12): 2403–2004. DOI: 10.1007/s00259-010-1602-2.

12. Fan Y.X., Luo R.C., Li G.P., Huang K. Di Yi Jun Yi Da Xue Xue Diagnostic value of 99mTc-MIBI brain SPECT for brain glioma. Bao. 2004; 24 (10): 1184–1185.

13. Bleichner-Perez S., Le Jeune F., Dubois F., Steinling M. 99mTc-MIBI brain SPECT as an indicator of the chemotherapy response of recurrent, primary brain tumors. Nucl. Med. Commun. 2007; 28 (12): 888–894. DOI: 10.1097/MNM.0b013e3282f1646c.

14. Palumbo B., Lupattelli M., Pelliccioli G.P., Chiarini P., Moschini T.O., Palumbo I., Siepi D., Buoncristiani P., Nardi M., Giovenali P., Palumbo R.Q. Association of 99mTc-MIBI brain SPECT and proton magnetic resonance spectroscopy (1H-MRS) to assess glioma recurrence after radiotherapy J. Nucl. Med. Mol. Imaging. 2006; 50 (1): 88–93.

15. Langen K.J., Coenen H.H., Roosen N., Kling P., Muzik O., Herzog H., Kuwert T., Stöcklin G., Feinendegen L.E. SPECT studies of brain tumors with L-3-[123I] iodo-alpha-methyl tyrosine: comparison with PET, 124IMT and first clinical results. J. Nucl. Med. 1990; 31 (3): 281–286.

16. Hellwig D., Ketter R., Romeike B.F., Sell N., Schaefer A., Moringlane J.R., Kirsch C.M., Samnick S. Validation of brain tumour imaging with p-[123I]iodo-L-phenylalanine and SPECT. Eur. J. Nucl. Med. Mol. Imaging. 2005; 32 (9): 1041– 1049. DOI: 10.1007/s00259-005-1807-y.

17. Pauleit D., Floeth F., Tellmann L., Hamacher K., Hautzel H., Müller H.W., Coenen H.H., Langen K.J. Comparison of O-(2-18F-fluoroethyl)-L-tyrosine PET and 3-123I-iodoalpha-methyl-L-tyrosine SPECT in brain tumors. J. Nucl. Med. 2004; 45 (3): 374–381.

18. Langen K.J., Roosen N., Coenen H.H., Kuikka J.T., Kuwert T., Herzog H., Stöcklin G., Feinendegen L.E. Brain and brain tumor uptake of L-3-[123I]iodo-alpha-methyl tyrosine: competition with natural L-amino acids. J. Nucl. Med. 1991; 32 (6): 1225–1229.

19. Rainer E., Wang H., Traub-Weidinger T., Widhalm G., Fueger B., Chang J., Zhu Z., Marosi C., Haug A., Hacker M., Li S. The prognostic value of [123I]-vascular endothelial growth factor ([123I]-VEGF) in glioma. Eur. J. Nucl. Med. Mol. Imaging. 2018; 45 (13): 2396–2403. DOI: 10.1007/s00259-018-4088-y.

20. Hellwig D., Ketter R., Romeike B.F., Schaefer A., Farmakis G., Grgic A., Moringlane J.R., Steudel W.I., Kirsch C.M., Samnick S. Prospective study of p-[123I]-iodo-L-phenylalanine and SPECT for the evaluation of newly diagnosed cerebral lesions: specific confirmation of glioma. Eur. J. Nucl. Med. Mol. Imaging. 2010; 37 (12): 2344–2353. DOI: 10.1007/s00259-010-1572-4.

21. Sun D., Liu Q., Liu W., Hu W. Clinical application of 201Tl SPECT imaging of brain tumors. J. Nucl. Med. 2000; 41 (1): 5–10.

22. Kahn D., Follett K.A., Bushnell D.L., Nathan M.A., Piper J.G., Madsen M., Kirchner P.T. Diagnosis of recurrent brain tumor: value of 201Tl SPECT vs 18F-fluorodeoxyglucose PET. Am. J. Roentgenol. 1994; 163 (6): 1459–1465. DOI: 10.2214/ajr.163.6.7992747.

23. Sugo N., Yokota K., Kondo K., Harada N., Aoki Y., Miyazaki C., Nemoto M., Kano T., Ohishi H., Seiki Y. Early dynamic 201Tl SPECT in the evaluation of brain tumours. Nucl. Med. Commun. 2006; 27 (2): 143–149. DOI: 10.1097/01.mnm.0000191853.34574.3f. PMID: 16404227.

24. Otsuka H., Shinbata H., Hieda M., Yamashita K., Kitamura H., Senba T., Kashihara K., Tagashira H. The retention indices of 201Tl-SPECT in brain tumors. Ann. Nucl. Med. 2002; 16 (7): 455–459. DOI: 10.1007/BF02988641.

25. Choi J.Y., Kim S.E., Shin H.J., Kim B.T., Kim J.H. Brain tumor imaging with 99mTc-tetrofosmin: comparison with 201Tl, 99mTc-MIBI, and 18F-fluorodeoxyglucose. J. Neurooncol. 2000; 46 (1): 63–70. DOI: 10.1023/a:1006391701818.

26. Nose A., Otsuka H., Nose H., Otomi Y., Terazawa K., Harada M. Visual and semi-quantitative assessment of brain tumors using (201)Tl-SPECT. J. Med. Invest. 2013; 60 (1-2): 121–126. DOI: 10.2152/jmi.60.121.

27. Suchorska B., Tonn J.C., Jansen N.L. PET imaging for brain tumor diagnostics. Curr. Opin. Neurol. 2014; 27 (6): 683–688. DOI: 10.1097/WCO.0000000000000143.

28. How Does It Work? Positron emission tomography. BMJ. 2003; 28: 326 (7404): 1449. DOI: 10.1136/bmj.326.7404.1449.

29. Inubushi M., Tatsumi M., Yamamoto Y. et al. European research trends in nuclear medicine. Ann. Nucl. Med. 2018; 32 (9): 579–582. DOI: 10.1007/S12149-018-1303-7.

30. Karpuz M., Silindir-Gunay M., Ozer A.Y. Current and future approaches for effective cancer imaging and treatment. Cancer Biother. Radiopharm. 2018; 33 (2): 39–51.

31. Di Chiro G., Brooks R.A., Patronas N.J. Issues in the in vivo measurement of glucose metabolism of human central nervous system tumor. Ann. Neurol. 1984; 15: 138–146. DOI: 10.1002/ana.410150727.

32. La Fougere C., Suchorska B., Bartenstein P. et al. Molecular imaging of gliomas with PET: opportunities and limitations. Neuro Oncol. 2011; 13 (8): 806–819. DOI: 10.1093/neuonc/nor054.

33. Chen W., Silverman D.H., Delaloye S. et al. 18F-FDOPA PET imaging of brain tumours: comparison study with 18F-FDG PET and evaluation of diagnostic accuracy. J. Nucl. Med. 2006; 47 (6): 904–911.

34. Kosaka N., Tsuchida T., Uematsu H. et al. 18F-FDG PET of common enhancing malignant brain tumors. Am. J. Roentgenol. 2008; 190 (6): 365–369. DOI: 10.2214/AJR.07.2660.

35. Yamashita K., Yoshiura T., Hiwatashi A. et al. Differentiating primary CNS lymphoma from glioblastoma multiforme: assessment using arterial spin labeling, diffusion-weighted imaging, and (18)F-fluorodeoxyglucose positron emission tomography. Neuroradiology. 2013; 55 (2): 135–143. DOI: 10.1007/s00234-012-1089-6.

36. Omuro A.M., Leite C.C., Mokhtari K. et al. Pitfalls in the diagnosis of brain tumours. Lancet Neurol. 2006; 5 (11): 937– 948. DOI: 10.1016/S1474-4422(06)70597-X.

37. Prieto E., Marti-Climent J.M., Dominguez-Prado I. et al. Voxel-based analysis of dual-time-point 18F-FDG PET images for brain tumor identification and delineation. J. Nucl. Med. 2011; 52 (6): 865–872.

38. Lee J.W., Kang K.W., Park S.H., Lee S.M., Paeng J.C., Chung J.K., Lee M.C., Lee D.S. 18F-FDG PET in the assessment of tumor grade and prediction of tumor recurrence in intracranial meningioma. European Journal of Nuclear Medicine and Molecular Imaging. 2009; 36 (10): 1574–1582. DOI: 10.1007/s00259-009-1133-x.

39. Koç Z.P., Kara P.Ö., Dağtekin A. Detection of unknown primary tumor in patients presented with brain metastasis by F-18 fluorodeoxyglucose positron emission tomography/computed tomography. CNS Oncol. 2018; 7 (2): CNS12. DOI: 10.2217/cns-2017-0018.

40. Colavolpe C., Metellus P., Mancini J. et al. Independent prognostic value of pre-treatment 18-FDG-PET in high-grade gliomas. J. Neurooncol. 2012; 107 (3): 527–535. DOI: 10.1007/s11060-011-0771-6.

41. Colavolpe C., Chinot O., Metellus P. et al. FDG-PET predicts survival in recurrent high-grade gliomas treated with bevaci zumab and irinotecan. Neuro Oncol. 2012; 14 (5): 649–657. DOI: 10.1093/neuonc/nos012.

42. Spence A.M., Muzi M., Graham M.M. et al. 2-[(18)F]Fluoro-2-deoxyglucose and glucose uptake in malignant gliomas before and after radiotherapy: correlation with outcome. Clin. Cancer Res. 2002; 8 (4): 971–979.

43. Charnley N., West C.M., Barnett C.M., et al. Early change in glucose metabolic rate measured using FDG-PET in patients with high-grade glioma predicts response to temozolomide but not temozolomide plus radiotherapy. Int. J. Radiat. Oncol. Biol. Phys. 2006; 66 (2): 331–338. DOI: 10.1016/J.IJROBP.2006.04.043.

44. Caroline I., Rosenthal M.A. Imaging modalities in highgrade gliomas: pseudoprogression, recurrence, or necrosis? J. Clin. Neurosci. 2012; 19 (5): 633–637. DOI: 10.1016/j.jocn.2011.10.003.

45. Nihashi T., Dahabreh I.J., Terasawa T. Diagnostic accuracy of PET for recurrent glioma diagnosis: a meta-analysis. Am. J. Neuroradiol. 2013; 34 (5): 944–950. DOI: 10.3174/ajnr. A3324.

46. Basu S., Alavi A. Molecular imaging (Pet) of brain tumors? Nneuroimaging. Clin. N. Amer. 2009; 19 (4): 625–646. DOI: 10.1016/j.nic.2009.08.012.

47. Katsanos A.H., Alexiou G.A., Fotopoulos A.D., Jabbour P., Kyritsis A.P., Sioka C. Performance of 18F-FDG, 11C-Methionine, and 18F-FET PET for Glioma Grading: A Meta-analysis. Clinical Nuclear Medicine. 2019; 44 (11): 864–869. DOI: 10.1097/RLU.0000000000002654.

48. Glaudemans A.W., Enting R.H., Heesters M.A. et al. Value of 11C-methionine PET in imaging brain tumours and metastases. Eur. J. Nucl. Med. Mol. Imaging. 2013; 40 (4): 615–635. DOI: 10.1007/s00259-012-2295-5.

49. He Q., Zhang L., Zhang B., Shi X., Yi C., Zhang X. Diagnostic accuracy of 13N-ammonia PET, 11C-methionine PET and 18F-fluorodeoxyglucose PET: a comparative study in patients with suspected cerebral glioma. BMC Cancer. 2019: 19 (1): 332. DOI: 10.1186/s12885-019-5560-1.

50. Takenaka S., Asano Y., Shinoda J. et al. Comparison of (11) C-methionine, (11)C-choline, and (18)F-fluorodeoxyglucose-PET for distinguishing glioma recurrence from radiation necrosis. Neurol. Med. Chir. (Tokyo). 2014; 54 (4): 280–289. DOI: 10.2176/nmc.oa2013-0117.

51. Filss C.P., Galldiks N., Stoffels G., Sabel M., Wittsack H.J., Turowski B., Antoch G., Zhang K., Fink G.R., Coenen H.H. et al. Comparison of 18F-FET PET and perfusion-weighted MR imaging: a PET/MR imaging hybrid study in patients with brain tumors. J. Nucl. Med. 2014; 55 (4): 540–545. DOI: 10.2967/jnumed.113.129007.

52. Kebir S., Weber M., Lazaridis L. et al. Hybrid 11C-MET PET/MRI combined with «machine learning» in glioma diagnosis according to the revised glioma WHO classification 2016. Clin. Nucl. Med. 2019; 44 (3): 214–220. DOI: 10.1097/RLU.0000000000002398.

53. Jung T.Y., Jung S., Ryu H.S. et al. The application of magnetic resonance imaging-deformed 11c-methionine-positron emission tomography images in stereotactic radiosurgery. Stereotact. Funct. Neurosurg. 2019; 97 (4): 217–224. DOI: 10.1159/000503732.

54. Hotta M., Minamimoto R., Miwa K. 11C-methionine-PET for differentiating recurrent brain tumor from radiation necrosis: radiomics approach with random forest classifier. Sci. Rep. 2019; 9 (1): 156–166. DOI: 10.1038/s41598-019-52279-2.

55. Skvortsova T.Y., Gurchin A.F., Savintseva Z.I. C-methionine PET in assessment of brain lesions in patients with glial tumors after combined treatment. Zh. Vopr. Neirokhir. im. N.N. Burdenko. 2019; 83 (2): 27–36. DOI: 10.17116/neiro20198302127.

56. Dandois V., Rommel D., Renard L. et al. Substitution of 11C-methionine PET by perfusion MRI during the follow-up of treated high-grade gliomas: preliminary results in clinical practice. J. Neuroradiol. 2010; 37 (2): 89–97. DOI: 10.1016/J.NEURAD.2009.04.005.

57. Schinkelshoek M., Lopci E., Clerici E. et al. Impact of 11C-methionine positron emission tomography/computed tomography on radiation therapy planning and prognosis in patients with primary brain tumors. Tumori. 2018; 104 (6): 480. DOI: 10.1700/1778.19268.

58. Goldbrunner R., Ruge M., Kocher M., Lucas C.W., Galldiks N., Grau S. The treatment of gliomas in adulthood. Dtsch. Arztebl. Int. 2018; 115 (20-21): 356–364. DOI: 10.3238/arztebl.2018.0356.

59. Borbély K., Nyáry I., Tóth M., Ericson K., Gulyás B. Optimization of semi-quantification in metabolic PET studies with 18F-fluorodeoxyglucose and 11C-methionine in the determination of malignancy of gliomas. J. Neurol. Sci. 2006; 246 (1-2): 85–94. DOI: 10.1016/j.jns.2006.02.015.

60. Xu W., Gao L., Shao A., Zheng J., Zhang J. The performance of 11C-Methionine PET in the differential diagnosis of glioma recurrence. Oncotarget. 2017; 8 (53): 91030–91039. DOI: 10.18632/oncotarget.19024.

61. Muoio B., Giovanella L., Treglia G. Recent Developments of 18F-FET PET in Neurooncology. Curr. Med. Chem. 2018; 25 (26): 3061–3073. DOI: 10.2174/0929867325666171123202644.

62. Jansen N.L., Suchorska B., Wenter V. et al. Dynamic 18F-FET PET in newly diagnosed astrocytic low-grade glioma identifies high-risk patients. J. Nucl. Med. 2014; 55 (2): 198–203. DOI: 10.2967/JNUMED.113.122333.

63. Jansen N.L., Suchorska B., Wenter V. et al. Prognostic significance of dynamic 18F-FET PET in newly diagnosed astrocytic high-grade glioma. J. Nucl. Med. 2015; 56 (1): 9–15. DOI: 10.2967/jnumed.114.144675.

64. Jansen N.L., Graute V., Armbruster L. et al. MRI-suspected low-grade glioma: is there a need to perform dynamic FET PET? Eur. J. Nucl. Med. Mol. Imaging. 2012; 39 (6): 1021–1029. DOI: 10.1007/s00259-012-2109-9.

65. Galldiks N., Langen K.J., Holy R. et al. Assessment of treatment response in patients with glioblastoma using O-(2-18Ffluoroethyl)-L-tyrosine PET in comparison to MRI. J. Nucl. Med. 2012; 53 (7): 1048–1057. DOI: 10.2967/jnumed.111.098590.

66. Suchorska B., Jansen N.L., Linn J. et al. Biological tumor volume in 18FET-PET before radiochemotherapy correlates with survival in GBM. Neurology. 2015; 84 (7): 710–719. DOI: 10.1212/WNL.0000000000001262.

67. Floeth F.W., Pauleit D., Sabel M. et al. Prognostic value of O-(2-18F-fluoroethyl)-L-tyrosine PET and MRI in low-grade glioma. J. Nucl. Med. 2007; 48 (4): 519–527. DOI: 10.2967/jnumed.106.037895.

68. Walter F., Cloughesy T., Walter M.A. et al. Impact of 3,4-dihydroxy-6-18F-fluoro-L-phenylalanine PET/CT on managing patients with brain tumors: the referring physician’s perspective. J. Nucl. Med. 2012; 53 (3): 393–398. DOI: 10.2967/jnumed.111.095711.

69. Fueger B.J., Czernin J., Cloughesy T. et al. Correlation of 6-18F-fluoro-L-dopa PET uptake with proliferation and tumor grade in newly diagnosed and recurrent gliomas. J. Nucl. Med. 2010; 51 (10): 1532–1538. DOI: 10.2967/jnumed.110.078592.

70. Shen G., Ma H., Pang F., Ren P., Kuang A. Correlations of 18F-FDG and 18F-FLT uptake on PET with Ki-67 expression in patients with lung cancer: a meta-analysis. Acta Radiol. 2018; 59 (2): 188–195. DOI: 10.1177/0284185117706609.

71. Chen W., Delaloye S., Silverman D.H.S. et al. Predicting treatment response of malignant gliomas to bevacizumaband irinotecan by imaging proliferation with [18F] fluoro-thymidine positron emission tomography: a pilot study. J. Clin. Oncol. 2007; 25 (30): 4714–4721. DOI: 10.1200/JCO.2006.10.5825.

72. Bekaert L., Valable S., Lechapt-Zalcman E. et al. [18F]-FMISO PET study of hypoxia in gliomas before surgery: correlation with molecular markers of hypoxia and angiogenesis. Eur. J. Nucl. Med. Mol. Imaging. 2017; 44 (8): 1383–1392. DOI: 10.1007/s00259-017-3677-5.

73. Van Dongen G.A., Huisman M.C., Boellaard R. et al. 89Zr-immuno-PET for imaging of long circulating drugs and disease targets: why, how and when to be applied? Q. J. Nucl. Med. Mol. Imaging. 2015; 59 (1): 18–38.

74. Kim H., Lee S.J., Davies-Venn C. et al. 64Cu-DOTA as a surrogate positron analog of Gd-DOTA for cardiac fibrosis detection with PET: pharmacokinetic study in a rat model of chronic MI. Nucl. Med. Commun. 2016; 37 (2): 188–196. DOI: 10.1097/MNM.0000000000000417.

75. Siitonen R., Peuhu E., Autio A. et al. 68Ga-DOTA-E[c(RGDfK)]2 PET imaging of SHARPIN-regulated integrin activity in mice. J. Nucl. Med. 2019; 60 (10): 1380–1387. DOI: 10.2967/jnumed.118.222026.

76. Soldevilla-Gallardo I., Medina-Ornelas S.S., Davanzo J., Pedrero-Piedras R. 68Ga-DOTA-E-[c(RGDfK)]2 positron emission tomography-computed tomography in the evaluation of hepatic hemangioendothelioma epithelioid. Rare Tumors. 2019; 11: 2036361319831097. DOI: 10.1177/2036361319831097

77. Leе H.-K., Moon D.-H., Ryu J.-S. et al. Radioisotope-labeled complexes of glucose derivatives and kits for the preparation thereof. Patent United States. 2003. Pub. No. 2003/0120046 A.

78. Cheng D., Rusckowski M., Wang Y.., Liu Y., Liu G., Liu X., Hnatowich D. A brief evaluation of tumor imaging in mice with 99mTc-glucarate including a comparison with 18F-FDG. Curr. Radiopharm. 2011; 4 (1): 5–9. DOI: 10.2174/1874471011104010005.

79. Chen X., Li L., Liu F., Liu B. Synthesis and biological evaluation of technetium-99m-labeled deoxyglucose derivatives as imaging agents for tumor. Bioorg. Med. Chem. Lett. 2006; 16 (21): 5503–5506. DOI: 10.1016/j.bmcl.2006.08.050.

80. Chen Y., Huang Z.W., He L., Zheng S.L. et al. Synthesis and evaluation of a technetium-99m-labeled diethylentriaminepentaacetate-deoxyglucose complex 99mTc-DTPA-DG as a potential imaging modality for tumors. Fppl. Radiat. and Isot. 2006; 64 (3): 342–347. DOI: 10.1016/j.apradiso.2005.08.004.

81. Seidensticker M., Ulrich G., Muehlberg F.L., Pethe A., Grosser O.S., Steffen I.G., Stiebler M., Goldschmidt J., Smalla K.H., Seidensticker R., Ricke J., Amthauer H., Mohnike K. Tumor cell uptake of 99mTc-labeled 1-thio-β-D-glucose and 5-thio-D-glucose in comparison with 2-deoxy-2-[18F]fluoro-D-glucose in vitro: kinetics, dependencies, blockage and cell compartment of accumulation. Mol. Imaging Biol. 2014; 16 (2): 189–198. DOI: 10.1007/s11307-013-0690-3.

82. Dapueto R., Aguiar R.B., Moreno M., Machado C.M., Marques F.L., Gambini J.P., Chammas R., Cabral P., Porcal W. Technetium glucose complexes as potential cancer imaging agents. Bioorg. Med. Chem. Lett. 2015; 25 (19): 4254–4259. DOI: 10.1016/j.bmcl.2015.07.098.

83. Chernov V.I., Triss S.V., Skuridin V.S., Lishmanov Yu.B. Thallium-199: a new radiopharmaceutical for myocardial perfusion imaging. The International Journal of Cardiovascular Imaging. 1996; 12 (2): 119–126. DOI: 10.1007/bf01880743.

84. Chernov V.I., Sinilkin I.G., Zelchan R.V., Medvedeva A.A., Lyapunov A.Yu., Bragina O.D., Varlamova N.V., Skuridin V.S. Experimental Study of 99mTc-Aluminum Oxide Use for Sentinel Lymph Nodes Detection. AIP Conference Proceedings. 2016; 1760: 020012. DOI: 10.1063/1.4960231

85. Zeltchan R., Medvedeva А., Sinilkin I., Bragina O., Chernov V., Stasyuk E., Rogov A., Il’ina E., Larionova L., Skuridin V., Dergilev A. Experimental study of radiopharmaceuticals based on technetium-99m labeled derivative of glucose for tumor diagnosis. IOP Conf. Series: Materials Science and Engineering. 2016; 135: 012054. DOI: 10.1088/1757-899X/135/1/012054.

86. Zeltchan R., Chernov V., Medvedeva А., Sinilkin I., Stasyuk Е., Rogov А., Il’ina Е., Skuridin V., Bragina O. Study of a Glucose Derivative Labeled with Technetium-99m as Potential Radiopharmaceutical for Cancer Diagnosis. Congress of the European Association of Nuclear Medicine, Barcelona, Spain in October 15–19, 2016. Eur. J. Nucl. Med. Mol. Imaging. 2016; 43 (Suppl. 1): 466.

87. Bragina O., Witting E. von, Garousi J., Zelchan R., Sandström M.,Medvedeva A., Orlova A., Doroshenko A., Vorobyeva A., Lindbo S., Borin J., Tarabanovskaya N., Sorensen J., Hober S., Chernov V., Tolmachev V. Phase I study of 99mTc-ADAPT6, a scaffold protein-based probe for visualization of HER2 expression in breast cancer. Journal of Nuclear Medicine. 2020. DOI: 10.2967/jnumed.120.248799. URL: http://jnm.snmjournals.org/content/early/2020/08/13/jnumed.120.248799.abstract.

88. Stasyuk E., Sкuridin V., Rogov A., Zelchan R., Sadkin V., Varlamova N., Nestеrov E. 99mTc-labeled monosaccharide kits: Development methods and quality control. Scientific Reports. 2020; 10 (1): 5121. DOI: 10.1038/s41598-020-61707-7. URL: https://www.nature.com/articles/s41598-020-61707-7.pdf.

89. Shivamurthy V.K., Tahari A.K., Marcus C., Subramaniam R.M. Brain FDG PET and the diagnosis of dementia. Am. J. Roentgenol. 2015; 204 (1): 76–85. DOI: 10.2214/AJR.13.12363.

90. Nestor P.J., Altomare D., Festari C., Drzezga A., Rivolta J., Walker Z., Bouwman F., Orini S., Law I., Agosta F., Arbi zu J., Boccardi M., Nobili F., Frisoni G.B. EANM-EAN task force for the prescription of fdg-pet for dementing neurodegenerative disorders. Clinical utility of FDG-PET for the differential diagnosis among the main forms of dementia. Eur. J. Nucl. Med. Mol. Imaging. 2018; 45 (9): 1509–1525. DOI: 10.1007/s00259-018-4035-y.

91. Wilson H., Pagano G., Politis M. Dementia spectrum disorders: lessons learnt from decades with PET research. Journal of Neural. Transmission. 2019; 126 (3): 233–251. DOI: 10.1007/s00702-019-01975-4.

92. Zukotynski K., Kuo P.H., Mikulis D., Rosa-Neto P., Strafella A.P., Subramaniam R.M., Black S.E. PET/CT of Dementia. Am. J. Roentgenol. 2018; 211 (2): 246–259. DOI: 10.2214/AJR.18.19822.

93. Masdeu J.C. Neuroimaging of diseases causing dementia. Neurol. Clin. 2020; 38 (1): 65–94. DOI: 10.1016/j.ncl.2019.08.003.

94. Pagano G., Niccolini F., Politis M. Imaging in Parkinson’s disease. Clin. Med. (Lond.). 2016; 16 (4): 371–375. DOI: 10.7861/clinmedicine.16-4-371.

95. Uzuegbunam B.C., Librizzi D., Hooshyar Yousefi B. PET Radiopharmaceuticals for Alzheimer’s disease and Parkinson’s disease diagnosis, the current and future landscape. Molecules. 2020; 25 (4): 977. DOI: 10.3390/molecules25040977.


Рецензия

Для цитирования:


Зельчан Р.В., Медведева А.А., Рыбина А.Н., Брагина О.Д., Рябова А.И., Чернов В.И., Чойнзонов Е.Л. Современные методы радионуклидной диагностики опухолей и неопухолевой патологии головного мозга. Бюллетень сибирской медицины. 2021;20(4):131-142. https://doi.org/10.20538/1682-0363-2021-4-131-142

For citation:


Zelchan R.V., Medvedeva A.A., Bragina O.D., Ribina A.N., Ryabova A.I., Chernov V.I., Choynzonov E.L. Modern methods for radionuclide diagnosis of tumors and non-tumor pathologies of the brain. Bulletin of Siberian Medicine. 2021;20(4):131-142. https://doi.org/10.20538/1682-0363-2021-4-131-142

Просмотров: 742


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 1682-0363 (Print)
ISSN 1819-3684 (Online)