Preview

Bulletin of Siberian Medicine

Advanced search

Polymorphisms of candidate genes determining the clinical and hemostasiological characteristics of endocarditis of various etiology

https://doi.org/10.20538/1682-0363-2022-1-6-13

Abstract

Aim. To investigate polymorphisms of 18 genes as possible molecular genetic markers of predisposition or resistance to development of non-infective (NE) or infective endocarditis (IE).

Materials and methods. The study encompassed 81 patients with NE and 94 patients with IE. The control group included 225 conditionally healthy people. Polymorphisms of 18 genes were tested using polymerase chain reaction (PCR).

Results. For the first time, a statistically significant relationship was identified between gene polymorphisms and valvular vegetations: for genes in the hemostatic system – rs6025 (1691 G > A) of the F5 gene (AG genotype), rs1126643 (807 C > T) of the ITGA2 gene (TT genotype); for folate pathway genes – rs1805087 (2756 A > G) of the MTR gene (AG genotype) and rs11697325 (–8202 A/G) of the MMP9 gene (AA genotype) and rs2476601 (C1858T) of the PTPN22 gene (TT genotype). The protective effect of gene polymorphisms was revealed: for the NOS3 gene (4b / 4b genotype) and G (–572) C of the IL6 gene (CC genotype). For two polymorphisms, an association with thromboembolic complications in NE was revealed: rs1126643 (807 C > T) of the ITGA2 gene and rs1799889 (–675 5G > 4G) of the PAI (SERPINE1) gene. In IE, such an association was detected for the polymorphism rs11697325 (–8202 A/G) of the MMP-9 gene.

Conclusion. The polymorphisms of candidate genes were revealed, that are associated with the clinical and hemostasiological characteristics of IE and NE. In NE, for the first time, the association with thromboembolic complications was identified for two polymorphisms: rs1126643 (807 C > T) of the ITGA2 gene and rs1799889 (– 675 5G > 4G) of the PAI-1 (SERPINE1) gene. In IE, such a relationship was detected for one polymorphism – rs11697325 (8202 A/G) of the MMP-9 gene.

About the Authors

Y. S. Bakhareva
Research Institute of Therapy and Preventive Medicine, branch of the Federal Research Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences (RITPM – branch of ICG)
Russian Federation

175/1, Borisa Bogatkova Str., Novosibirsk, 630089



V. N. Maksimov
Research Institute of Therapy and Preventive Medicine, branch of the Federal Research Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences (RITPM – branch of ICG); Novosibirsk State Medical University (NSMU)
Russian Federation

175/1, Borisa Bogatkova Str., Novosibirsk, 630089
52, Krasny Av., Novosibirsk, 630091



A. A. Ivanova
Research Institute of Therapy and Preventive Medicine, branch of the Federal Research Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences (RITPM – branch of ICG)
Russian Federation

175/1, Borisa Bogatkova Str., Novosibirsk, 630089



N. N. Chapaeva
Novosibirsk State Medical University (NSMU)
Russian Federation

52, Krasny Av., Novosibirsk, 630091



S. V. Aidagulova
Novosibirsk State Medical University (NSMU)
Russian Federation

52, Krasny Av., Novosibirsk, 630091



M. I. Voevoda
Research Institute of Therapy and Preventive Medicine, branch of the Federal Research Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences (RITPM – branch of ICG)
Russian Federation

175/1, Borisa Bogatkova Str., Novosibirsk, 630089



References

1. Шляхто Е.В. Кардиология: Национальное руководство. М.: ГЭОТАР-Медиа, 2019:800.

2. Kintigh J., Monagle P., Ignjatovic V. A review of commercially available thrombin generation assays. Res. Pract. Thromb. Haemost. 2017;2(1):42–48. DOI: 10.1002/rth2.12048.

3. De Laat-Kremers R.M.W., Yan Q., Ninivaggi M., de Maat M., de Laat B. Deciphering the coagulation profile through the dynamics of thrombin activity. Sci. Rep. 2020;10(1):12544. DOI: 10.1038/s41598-020-69415-y.

4. Desch K.C. Dissecting the genetic determinants of hemostasis and thrombosis. Curr. Opin. Hematol. 2015;22(5):428–436. DOI: 10.1097/MOH.0000000000000165.

5. Duarte R.C.F., Rios D.R.A., Rezende S.M., Jardim L.L., Ferreira C.N., Carvalho M.D.G. Standardization and evaluation of the performance of the thrombin generation test under hypo- and hypercoagulability conditions. Hematol. Transfus. Cell. Ther. 2019;41(3):244–252. DOI: 10.1016/j.htct.2018.08.007.

6. Тепляков А.Т., Березикова Е.Н., Шилов С.Н., Гракова Е.В., Торим Ю.Ю., Ефремов А.В. и др. Оценка роли полиморфизма гена матриксной металлопротеиназы-3 в развитии хронической сердечной недостаточности. Терапевтический архив. 2015;87(4):8–12. DOI: 10.17116/terarkh20158748-12.

7. Mantovani F., Navazio A., Barbieri A., Boriani G. A first described case of cancer-associated non-bacterial thrombotic endocarditis in the era of direct oral anticoagulants. Thromb. Res. 2017;149:45–47. DOI: 10.1016/j.thromres.2016.11.016.

8. Karthikeyan K., Balla S., Alpert M.A. Non-infectious aortic and mitral valve vegetations in a patient with eosinophilic granulomatosis with polyangiitis. BMJ Case Rep. 2019;12(5). pii:e225947. DOI: 10.1136/bcr-2018-225947.

9. Рябов В.В., Гомбоева С.Б., Лугачева Ю.Г., Кулагина И.В., Карпов Р.С. Неблагоприятные варианты генов метаболизма фолатов у пациентов с острым коронарным синдромом при необструктивном коронарном атеросклерозе. Российский кардиологический журнал. 2018;(10):33–42. DOI: 10.15829/1560-4071-2018-10-33-42.

10. Ponasenko A.V., Kutikhin A.G., Khutornaya M.V., Odarenko Y.N., Kazachek Y.V., Tsepokina A.V. et al. Inherited variation in cytokine, acute phase response, and calcium metabolism genes affects susceptibility to infective endocarditis. Mediators Inflamm. 2017:7962546. DOI: 10.1155/2017/7962546.

11. Habib G., Lancellotti P., Antunes M.J., Bongiorni M.G., Casalta J.P., Del Zotti F. et al. 215 ESC Guidelines for the management of infective endocarditis: The task force for the management of infective endocarditis of the European Society of Cardiology (ESC) endorsed by: European Association for Cardio-Thoracic Surgery (EACTS), the European Association of Nuclear Medicine (EANM). Eur. Heart J. 2015;36(44):3075–3128. DOI: 10.1093/eurheartj/ehv319.

12. Alberici F., Martorana D., Vaglio, A. Genetic aspects of anti-neutrophil cytoplasmic antibody-associated vasculitis. Nephrol. Dial. Transplant. 2015;30(Suppl.1):37–45. DOI: 10.1093/ndt/gfu386.

13. Li C., Ren H., Chen H., Song J., Li S., Lee C. et al. Prothrombin G20210A (rs1799963) polymorphism increases myocardial infarction risk in an age-related manner: A systematic review and meta-analysis. Sci. Rep. 2017;7(1):13550. DOI: 10.1038/s41598-017-13623-6.

14. Watson H., Perez A., Ayesu K., Musa F., Sarriera J., Madruga M. et al. Inherited factor II deficiency with paradoxical hypercoagulability: a case report. Blood Coagul. Fibrinolysis. 2018;29(2):223–226. DOI: 10.1097/MBC.0000000000000710.

15. Man H.S., Yan M.S., Lee J.J., Marsden P.A. Epigenetic determinants of cardiovascular gene expression: vascular endothelium. Epigenomics. 2016;8(7):959–979. DOI: 10.2217/epi-2016-0012.

16. Sundquist K., Wang X., Svensson P.J., Sundquist J., Hedelius A., Larsson Lönn S. et al. Plasminogen activator inhibitor-1 4G/5G polymorphism, factor V Leiden, prothrombin mutations and the risk of VTE recurrence. Thromb. Haemost. 2015;114(6):1156–1164. DOI: 10.1160/TH15-01-0031.

17. Masud R., Baqai H.Z. The communal relation of MTHFR, MTR, ACE gene polymorphisms and hyperhomocysteinemia as conceivable risk of coronary artery disease. Appl. Physiol. Nutr. Metab. 2017;42(10):1009–1014. DOI: 10.1139/apnm2017-0030.

18. Yagi T., Takahashi K., Tanikawa M., Seki M., Abe T., Suzuki N. Fatal intracranial hemorrhage after intravenous thrombolytic therapy for acute ischemic stroke associated with cancer-related nonbacterial thrombotic endocarditis. J. Stroke Cerebrovasc. Dis. 2014;23(8):413–416. DOI: 10.1016/j.jstrokecerebrovasdis.2014.04.004.

19. Rath D., Schaeffeler E., Winter S., Levertov S., Müller K., Droppa M. et al. GPLa polymorphisms are associated with outcomes in patients at high cardiovascular risk. Front Cardiovasc. Med. 2017;(4):52. DOI: 10.3389/fcvm.2017.00052.

20. Gong D., Gu H., Zhang Y., Gong J., Nie Y., Wang J. et al. Methylenetetrahydrofolate reductase C677T and reduced folate carrier 80 G > A polymorphisms are associated with an increased risk of conotruncal heart defects. Clin. Chem. Lab. Med. 2012;50(8):1455–1461. DOI: 10.1515/cclm-2011-0759.

21. Hmimech W., Idrissi H.H., Diakite B., Baghdadi D., Korchi F., Habbal R. et al. Association of C677T MTHFR and G20210A FII prothrombin polymorphisms with susceptibility to myocardial infarction. Biomed. Rep. 2016;5(3):361–366. DOI: 10.3892/br.2016.717.

22. McVey J.H., Rallapalli P.M., Kemball-Cook G., Hampshire D.J., Giansily-Blaizot M., Gomez K. et al. The European Association for haemophilia and allied disorders (EAHAD) coagulation factor variant databases: Important resources for haemostasis clinicians and researchers. Haemophilia. 2020;26(2):306–313. DOI: 10.1111/hae.13947.

23. Fragoso J.M., Delgadillo H., Juárez-Cedillo T., Rodríguez-Pérez J.M., Vallejo M., Pérez-Méndez O. et al. The interleukin 6-572 G>C (rs1800796) polymorphism is associated with the risk of developing acute coronary syndrome. Genet. Test. Mol. Biomarkers. 2010;4(6):759–763. DOI: 10.1089/gtmb.2010.0001.


Review

For citations:


Bakhareva Y.S., Maksimov V.N., Ivanova A.A., Chapaeva N.N., Aidagulova S.V., Voevoda M.I. Polymorphisms of candidate genes determining the clinical and hemostasiological characteristics of endocarditis of various etiology. Bulletin of Siberian Medicine. 2022;21(1):6-13. https://doi.org/10.20538/1682-0363-2022-1-6-13

Views: 682


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1682-0363 (Print)
ISSN 1819-3684 (Online)