Preview

Bulletin of Siberian Medicine

Advanced search

Application of the method of finite elements in the process of mathematical modeling in urology

https://doi.org/10.20538/1682-0363-2012-2-157-164

Abstract

The article presents data on possibility of the application of the method of finite elements (FEM) in the mathematical modeling of various diseases of the organs of the urogenital system, their diagnostics and treatment. Special attention was paid to the prospects of application of FEM for modelling methods of surgical treatment of diseases of the kidneys and urinary tract.

About the Authors

V. M. Popkov
Саратовский государственный медицинский университет им. В.И. Разумовского, г. Саратов
Russian Federation


D. Yu. Potapov
Саратовский государственный медицинский университет им. В.И. Разумовского, НИИ фундаментальной и клинической уронефрологии, г. Саратов
Russian Federation


A. N. Ponukalin
Саратовский государственный медицинский университет им. В.И. Разумовского, НИИ фундаментальной и клинической уронефрологии, г. Саратов
Russian Federation


B. I. Blumberg
Саратовский государственный медицинский университет им. В.И. Разумовского, г. Саратов
Russian Federation


References

1. Севостьянов А.Г., Севостьянов П.А. Моделирование технологических процессов: учебник. М.а: Легкая и пищевая промышленность, 1984. 344 с.

2. Советов Б.Я., Яковлев С.А. Моделирование систем: учеб. для вузов. 3-е изд., перераб. и доп. М.: Высш. шк., 2001. 343 с.

3. Afshari E., Najarian S., Simforoosh N. Application of artifi-cial tactile sensing approach in kidney-stone-removal lapa-roscopy // Biomed. Mater. Eng. 2010. V. 20, № 5. Р. 261—267.

4. Ahmed M., Liu Z., Humphries S. et al. Computer modeling of the combined effects of perfusion, electrical conductivity, and thermal conductivity on tissue heating patterns in radiof-requency tumor ablation // Int. J. Hyperthermia. 2008. V. 24, № 7. P. 577—588.

5. Alterovitz R., Goldberg K., Pouliot J. et al. Registration of MR prostate images with biomechanical modeling and non-linear parameter estimation // Med. Phys. 2006. V. 33, № 2. P. 446—454.

6. Bharatha A., Hirose M., Hata N. et al. Evaluation of three-dimensional finite element-based deformable registration of pre- and intraoperative prostate imaging // Med. Phys. 2001. V. 28, № 12. P. 2551—2560.

7. Brock K., Nichol A., Ménard C. et al. Accuracy and sensi-tivity of finite element model-based deformable registration of the prostate // Med. Phys. 2008. V. 35, № 9. P. 4019—4025.

8. Cogdon C., Knapp C., Park A. et al. Numerical analysis of an anastomotic device // Comput. Methods Biomech. Biomed. Engin. 2002. V. 5, № 1. P. 53—65.

9.

10. Courtis P., Samani A. Detecting mechanical abnormalities in prostate tissue using FE-based image registration // Med. Image Comput. Comput. Assist. Interv. 2007. № 10 (Pt. 2). P. 244—251.

11. Crouch J., Pizer S., Chaney E. et al. Automated finite-element analysis for deformable registration of prostate images // IEEE Trans. Med. Imaging. 2007. V. 26, № 10. P. 1379—1390.

12. Dehghan E., Goksel O., Salcudean S. A comparison of nee-dle bending models // Med. Image Comput. Comput. Assist. Interv. 2006. № 9 (Pt. 1). P. 305—312.

13. El-Baz A., Fahmi R., Yuksel S. et al. A new CAD system for the evaluation of kidney diseases using DCE-MRI // Med. Image Comput. Comput. Assist. Interv. 2006. № 9 (Pt. 2). P. 446—453.

14. Fei B., Wang H., Muzic R. Jr. et al. Deformable and rigid registration of MRI and microPET images for photodynamic therapy of cancer in mice // Med. Phys. 2006. V. 33, № 3. P. 753—760.

15. Haemmerich D. Mathematical modeling of impedance con-trolled radiofrequency tumor ablation and ex-vivo validation // Conf. Proc. IEEE Eng. Med. Biol. Soc. 2010. P. 1605—1608.

16. Hahn J., Manyak M., Jin G. et al. Cryotherapy simulator for localized prostate cancer // Stud. Health Technol. Inform. 2002. № 85. P. 173—178.

17. He X., Bischof J. Analysis of thermal stress in cryosurgery of kidneys // J. Biomech. Eng. 2005. V. 127, № 4. P. 656—661.

18. He X., McGee S., Coad J. et al. Investigation of the thermal and tissue injury behaviour in microwave thermal therapy using a porcine kidney model // Int. J. Hyperthermia. 2004. V. 20, № 6. P. 567—593.

19. Hu Y., van den Boom R., Carter T. et al. A comparison of the accuracy of statistical models of prostate motion trained using data from biomechanical simulations // Prog. Biophys. Mol. Biol. 2010. V. 103, № 2—3. P. 262—272.

20. Hu Y., Morgan D., Ahmed H. et al. A statistical motion mod-el based on biomechanical simulations for data fusion during image-guided prostate interventions // Med. Image Comput. Comput. Assist. Interv. 2008. № 11 (Pt. 1). P. 737—744.

21. Jacquir S., Fruitet J., Guiraud D. et al. Computation of the electrical potential inside the nerve induced by an electrical stimulus // Conf. Proc. IEEE Eng. Med. Biol. Soc. 2007. 2007. P. 1711—1714.

22. Johansson A., Axelsson J., Andersson-Engels S. et al. Realtime light dosimetry software tools for interstitial pho-todynamic therapy of the human prostate // Med. Phys. 2007. V. 34, № 11. P. 4309—4321.

23. Keshtkar A. Modeled current distribution inside the normal and malignant human urothelium using finite element analysis // IEEE Trans. Biomed. Eng. 2008. V. 55, № 2 (Pt. 1). P. 733—738.

24. Kim J., Ahn B., Kim Y. et al. Inclusion detection with haptic-palpation system for medical telediagnosis // Conf. Proc. IEEE Eng. Med. Biol. Soc. 2009. 2009. P. 4595—4958.

25. Krywonos J., Fenwick J., Elkut F. et al. MRI image-based FE modelling of the pelvis system and bladder filling // Comput. Methods Biomech. Biomed. Engin. 2010. V. 13, № 6. P. 669—676.

26. Li J., Zhu T. Determination of in vivo light fluence distri¬bution in a heterogeneous prostate during photodynamic therapy // Phys. Med. Biol. 2008. V. 53, № 8. P. 2103—2114.

27. Liu J., Wang S., Hu S. et al. Mechanical analysis of end-to-end silk-sutured anastomosis for robot-assisted surgery // Int. J. Med. Robot. 2009. V. 5, № 4. P. 444—451.

28. Marino G., Bignardi C., Pacca M. et al. Mechanical characteristics of the human bladder wall and application of the results in a finite elements model to study the pelvic floor // Minerva Urol. Nefrol. 2006. V. 58, № 2. P. 213—219.

29. Marqa M., Colin P., Nevoux P. et al. Focal laser ablation of prostate cancer: numerical simulation of temperature and damage distribution // Biomed. Eng. Online. 2011. № 2. P. 10—45.

30. Meyer M., Velte H., Lindenborn H. et al. Radiofrequency ablation of renal tumors improved by preoperative ex-vivo computer simulation model // J. Endourol. 2007. V. 21, № 8. P. 886—890.

31. Schmidlin F., Rupp C., Hoffmann N. et al. Measurement and prediction of thermal behavior and acute assessment of injury in a pig model of renal cryosurgery // J. Endourol. 2001. V. 15, № 2. P. 193—197.

32. Schmitt K., Snedeker J. Analysis of the biomechanical

33. response of kidneys under blunt impact // Traffic Inj. Prev. 2006. V. 7, № 2. P. 171—181.

34. Snedeker J., Barnstuble B., Iaizzo P. et al. A comprehensive renal injury concept based on a validated finite element model of the human abdomen // J. Trauma. 2007. V. 62, № 5. P. 1240—1249.

35. Song C., Frank T., Cuschieri A. Shape memory alloy clip for compression colonic anastomosis // J. Biomech. Eng. 2005. V. 127, № 2. P. 351—354.

36. Sreenivasa G., Gellermann J., Rau B. et al. Clinical use of the hyperthermia treatment planning system HyperPlan to predict effectiveness and toxicity // Int. J. Radiat. Oncol. Biol. Phys. 2003. V. 55, № 2. P. 407—419.

37. Tham L., Lee H., Lu C. Enhanced kidney stone fragmentation by short delay tandem conventional and modified lithotriptor shock waves: a numerical analysis // J. Urol. 2007. V. 178, № 1. P. 314—319.

38. Vahidi B., Fatouraee N. A numerical simulation of peristaltic motion in the ureter using fluid structure interactions // Conf. Proc. IEEE Eng. Med. Biol. Soc. 2007. P. 1168—1171.

39. Walker D., Smallwood R., Keshtar A. et al. Modelling the electrical properties of bladder tissue-quantifying impedance changes due to inflammation and oedema // Physiol. Meas. 2005. V. 26. № 3. P. 251—268.

40. Weinberg K. Shock wave induced damage in kidney tissue // Computational Materials Science. 2005. № 32. S. 588—593.

41. Weinberg K., Ortiz M. Kidney damage in extracorporeal shock wave lithotripsy: a numerical approach for different shock profiles // Biomech. Model Mechanobiol. 2009. V. 8, № 4. P. 285—299.

42. Wren J. Microwave thermotherapy of prostatic enlargement--analysis of radiometric thermometry using a hybrid bio-heat equation // Comput. Methods Biomech. Biomed. Engin. 2004. V. 7, № 3. P. 177—185.

43. Xiong L., Viswanathan A., Stewart A. et al. Deformable structure registration of bladder through surface mapping // Med. Phys. 2006. V. 33, № 6. P. 1848—1856.

44. Yan D., Jaffray D., Wong J. A model to accumulate fractionated dose in a deforming organ // Int. J. Radiat. Oncol. Biol. Phys. 1999. V. 44, № 3. P. 665—675.


Review

For citations:


Popkov V.M., Potapov D.Yu., Ponukalin A.N., Blumberg B.I. Application of the method of finite elements in the process of mathematical modeling in urology. Bulletin of Siberian Medicine. 2012;11(2):157-164. (In Russ.) https://doi.org/10.20538/1682-0363-2012-2-157-164

Views: 743


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1682-0363 (Print)
ISSN 1819-3684 (Online)