The effect of systemic melatonin administration on the intensity of free radical damage to lipids and proteins in the burn wound in the dynamics of experimental thermal injury
https://doi.org/10.20538/1682-0363-2022-1-89-95
Abstract
Aim. To assess the effect of melatonin (MT) on the content of lipid peroxidation (LPO) and protein oxidation (PO) products in the tissue homogenate from the burn wound in experimental thermal injury (TI).
Materials and methods. Third-degree (IIIA) TI with a relative area of 3.5% was modeled on male Wistar rats via contact of the skin with boiling water. Intraperitoneal administration of MT (10 mg / kg) was performed once a day for 5 days. On days 5, 10, and 20, LPO products in the heptane and isopropanol phases of lipid extraction and PO products were determined in the tissue homogenate from the burn wound.
Results. The content of secondary and end products of LPO in the heptane phase and end products in the isopropanol phase increased in the wound. The content of primary and secondary PO products of neutral nature increased on days 5, 10, and 20, and the level of secondary PO products of neutral nature elevated on days 10 and 20. Administration of MT reduced the content of LPO end products in the heptane phase, secondary and end products of LPO in the isopropanol phase, and the total amount of PO products due to primary and secondary products of neutral nature.
Conclusion. In the 20-day follow-up, LPO and PO products accumulated in the burn wound. The administration of MT at a total dose of 50 mg / kg led to reduction and partial restoration of the content of LPO and POM products, which can limit secondary alterations and accelerate healing of the burn wound.
About the Authors
M. V. OsikovRussian Federation
64, Vorovskogo Str., Chelyabinsk, 454092
A. A. Ageeva
Russian Federation
64, Vorovskogo Str., Chelyabinsk, 454092
Yu. I. Ageev
Russian Federation
64, Vorovskogo Str., Chelyabinsk, 454092
A. I. Sinitsky
Russian Federation
64, Vorovskogo Str., Chelyabinsk, 454092
Yu. M. Shatrova
Russian Federation
64, Vorovskogo Str., Chelyabinsk, 454092
References
1. Осиков М.В. Роль орозомукоида в регуляции активности систем плазменного протеолиза при экспериментальной почечной недостаточности. Бюллетень экспериментальной биологии и медицины. 2009;48(7):27–30.
2. Осиков М.В. Влияние эритропоэтина на процессы свободно-радикального окисления и экспрессию гликопротеинов в тромбоцитах при хронической почечной недостаточности. Бюллетень экспериментальной биологии и медицины. 2014;157(1):30–33.
3. Осиков М.В., Телешева Л.Ф., Агеев Ю.И. Влияние эритропоэтина на апоптоз лимфоцитов при экспериментальной хронической почечной недостаточности. Бюллетень экспериментальной биологии и медицины. 2015;159(3):326–329.
4. Osikov M.V., Telesheva L.F., Ageev Y.I. Antioxidant effect of erythropoietin during experimental chronic renal failure. Bulletin of Experimental Biology and Medicine. 2015;160(2): 202–204. DOI: 10.1007/s10517-015-3128-x.
5. Gus E.I., Shahrokhi S., Jeschke M.G. Anabolic and anticatabolic agents used in burn care: What is known and what is yet to be learned. Burns. 2020;46(1):19–32. DOI: 10.1016/j.burns.2018.03.009.
6. Mitran M.I., Nicolae I., Tampa M., Mitran C.I., Caruntu C., Sarbu M.I. et al. Reactive сarbonyl species as potential pro-oxidant factors involved in lichen planus pathogenesis. Metabolites. 2019;9(10):E213. DOI: 10.3390/metabo9100213.
7. Qin F.J., Hu X.H., Chen Z., Chen X., Shen Y.M. Protective effects of tiopronin against oxidative stress in severely burned patients. Drug Des. Devel. Ther. 2019;13:2827–2832. DOI: 10.2147/dddt.s215927.
8. AbuBakr H.O., Aljuaydi S.H., Abou-Zeid S.M., El-Bahrawy A. Burn-induced multiple organ injury and protective effect of lutein in rats. Inflammation. 2018;41(3):760–772. DOI: 10.1007/s10753-018-0730-x.
9. Hawkins C.L., Davies M.J. Detection, identification, and quantification of oxidative protein modifications. J. Biol. Chem. 2019;294(51):19683–19708. DOI: 10.1074/jbc.rev119.006217.
10. Gürünlüoğlu K., Demircan M., Taşçı A., Üremiş M.M., Türköz Y., Bağ H.G. et al. The effects of two different burn dressings on serum oxidative stress indicators in children with partial burn. J. Burn. Care Res. 2019;40(4):444–450. DOI: 10.1093/jbcr/irz037.
11. Zhao Y.Yu., Shen Y., Liu Q., Zhao Z., Sharma R., Reiter R.J. Melatonin synthesis and function: evolutionary history in animals and plants. Front. Endocrinol. (Lausanne). 2019;10:249. DOI: 10.3389/fendo.2019.00249.
12. Slominski A.T., Semak I., Fischer T.W., Kim T.K., Kleszczyński K., Hardeland R. et al. Metabolism of melatonin in the skin: Why is it important? Exp. Dermatol. 2017;26(7):563–568. DOI: 10.1111/exd.13208.
13. Janjetovic Z., Jarrett S.G., Lee E.F., Duprey C., Reiter R.J., Slominski A.T. Melatonin and its metabolites protect human melanocytes against UVB-induced damage: Involvement of NRF2-mediated pathways. Sci. Rep. 2017;7(1):1274. DOI: 10.1038/s41598-017-01305-2.
14. Rusanova I., Martínez-Ruiz L., Florido J., Rodríguez-Santana C., Guerra-Librero A., Acuña-Castroviejo D. et al. Protective effects of melatonin on the skin: future perspectives. Int. J. Mol. Sci. 2019;20(19):4948. DOI: 10.3390/ijms20194948.
15. Tordjman S., Chokron S., Delorme R., Charrier A., Bellissant É., Jaafari N. et al. Melatonin: pharmacology, functions and therapeutic benefits. Curr. Neuropharmacol. 2017;15(3):434–443. DOI: 10.2174/1570159x14666161228122115.
16. Львовская Е.И., Волчегорский И.А., Шемяков С.Е., Лифшиц Р.И. Спектрофотометрическое определение конечных продуктов. Вопросы медицинской химии. 1991;37(4):92–93.
17. Фомина М.А., Абаленихина Ю.В. Способ комплексной оценки содержания продуктов окислительной модификации белков в тканях и биологических жидкостях: методические рекомендации. Рязань: РИО РязГМУ, 2014:60.
18. Olczyk P., Komosinska-Vassev K., Ramos P., Mencner Ł., Olczyk K., Pilawa B. Application of numerical analysis of the shape of electron paramagnetic resonance spectra for determination of the number of different groups of radicals in the burn wounds. Oxid. Med. Cell Longev. 2017;2017:4683102. DOI: 10.1155/2017/4683102.
19. Nakazawa H., Ikeda K., Shinozaki S., Yasuhara S., Yu Y.M., Martyn J.A.J. et al. Coenzyme Q10 protects against burn-induced mitochondrial dysfunction and impaired insulin signaling in mouse skeletal muscle. FEBS Open Bio. 2019;9(2):348–363. DOI: 10.1002/2211-5463.12580.
20. Lee Y.H., Bang E.S., Lee J.H., Lee J.D., Kang D.R., Hong J. et al. Serum concentrations of trace elements zinc, copper, selenium, and manganese in critically Ill patients. Biol. Trace Elem. Res. 2019;188(2):316–325. DOI: 10.1007/s12011-018-1429-4.
21. Samuel T.J., Nelson M.D., Nasirian A., Jaffery M., Moralez G., Romero S.A. et al. Cardiac structure and function in well-healed burn survivors. J. Burn. Care Res. 2019;40(2):235–241. DOI: 10.1093/jbcr/irz008.
22. Valacchi G., Virgili F., Cervellati C. et al. OxInflammation: from subclinicalcCondition to pathological biomarker. Front. Physiol. 2018;9:858. DOI: 10.3389/fphys.2018.00858.
23. Lee J., Cho Y.S., Jung H., Choi I. Pharmacological regulation of oxidative stress in stem cells. Oxid. Med. Cell. Longev. 2018;2018:4081890. DOI: 10.1155/2018/4081890.
24. Slominski A.T., Zmijewski M.A., Semak I., Kim T.K., Janjetovic Z., Slominski R.M. et al. Melatonin, mitochondria, and the skin. Cell Mol. Life Sci. 2017;74(21):3913–3925. DOI: 10.1007/s00018-017-2617-7.
25. Reiter R.J., Rosales-Corral S., Tan D.X., Jou M.J., Galano A., Xu B. Melatonin as a mitochondria-targeted antioxidant: one of evolution’s best ideas. Cell Mol. Life Sci. 2017;74(21):3863-3881. DOI: 10.1007/s00018-017-2609-7.
Review
For citations:
Osikov M.V., Ageeva A.A., Ageev Yu.I., Sinitsky A.I., Shatrova Yu.M. The effect of systemic melatonin administration on the intensity of free radical damage to lipids and proteins in the burn wound in the dynamics of experimental thermal injury. Bulletin of Siberian Medicine. 2022;21(1):89-95. https://doi.org/10.20538/1682-0363-2022-1-89-95