Preview

Бюллетень сибирской медицины

Расширенный поиск

Удаленный мониторинг хронических неинфекционных заболеваний: потенциал в условиях пандемии COVID-19

https://doi.org/10.20538/1682-0363-2022-1-109-120

Аннотация

Цель: анализ актуального опыта использования существующих технологий удаленного мониторинга (УМ) хронических неинфекционных заболеваний (ХНИЗ).

Для поиска были использованы базы данных Web of Science, Scopus и Российского индекса научного цитирования, Academic Search Complete (EBSCO), библиотеки PubMed и Cochrain. Глубина поиска – 5–10 лет. Показана значимость развития технологий УМ и их дальнейшего изучения для подтверждения доказательности конкретных методов УМ.

Рассмотрены новые подходы к интеграции медицинского сообщества в международную повестку телемедицины. Установлено, что использование УМ потенциально способно снизить финансовые затраты на лечение пациентов и уменьшить нагрузку на медицинские организации. Проанализированы результаты применения УМ состояния пациентов с патологией сердечно-сосудистой системы, болезнями дыхательной системы, с заболеваниями эндокринной системы. Обобщены и систематизированы результаты исследований, посвященных оценке эффективности применения конкретных технологий УМ в клинической практике, в том числе в условиях пандемии новой коронавирусной инфекции SARS-CoV-2.

Отмечено, что несмотря на высокую заинтересованность научного сообщества в изучении технологий УМ, однозначных результатов, демонстрирующих эффективность разработок в клинической практике, в настоящее время не представлено.

Об авторах

О. С. Кобякова
Центральный научно-исследовательский институт организации и информатизации здравоохранения (ЦНИИОИЗ)
Россия

Кобякова Ольга Сергеевна, д-р мед. наук, профессор, директор

127254, г. Москва, ул. Добролюбова, 11



И. А. Деев
Центральный научно-исследовательский институт организации и информатизации здравоохранения (ЦНИИОИЗ)
Россия

Деев Иван Анатольевич, д-р мед. наук, профессор, зам. директора

127254, г. Москва, ул. Добролюбова, 11



Д. С. Тюфилин
Центральный научно-исследовательский институт организации и информатизации здравоохранения (ЦНИИОИЗ)
Россия

Тюфилин Денис Сергеевич, советник директора

127254, г. Москва, ул. Добролюбова, 11



Г. О. Александров
Сибирский государственный медицинский университет (СибГМУ)
Россия

Александров Георгий Олегович, студент, лечебный факультет

634050, г. Томск, Московский тракт, 2



Е. С. Куликов
Сибирский государственный медицинский университет (СибГМУ)
Россия

Куликов Евгений Сергеевич, д-р мед. наук, доцент, ректор

634050, г. Томск, Московский тракт, 2



Список литературы

1. Forouzanfar M.H., Afshin A., Alexander L.T. et al. Global, regional, and national comparative risk assessment of 79 behavioural, environmental and occupational, and metabolic risks or clusters of risks, 1990–2015: a systematic analysis for the global burden of disease study 2015. Lancet. 2016;388(10053):1659–1724. DOI: 10.1016/S0140-6736(16)31679-8.

2. Zhang X., Zaman B. Adoption mechanism of telemedicine in underdeveloped country. Health Informatics J. 2020;26(2):1088–1103. DOI: 10.1177/1460458219868353.

3. Fryer K., Delgado A., Foti T., Reid CN., Marshall J. Implementation of obstetric telehealth during COVID-19 and beyond. Matern. Chil. Health J. 2020;24(9):1104–1110. DOI: 10.1007/s10995-020-02967-7.

4. Петрова Р.Е., Шеяфетдинова Н.А, Соловьев А.А., Глобенко О.А., Портная Е.Б., Рыбаков О.Ю. и др. Современное состояние развития телемедицины в России: правовое и законодательное регулирование. Профилактическая медицина. 2019;22(2):5–9. DOI: 10.17116/profmed2019220215.

5. Martínez-García M., Bal-Alvarado M., Santos Guerra F. et al. Telemedicina con telemonitorización en el seguimiento de pacientes con COVID-19. Rev. Clínica Esp. 2020:S0014256520301557. DOI: 10.1016/j.rce.2020.05.013.

6. Smith A.C., Thomas E., Snoswell C.L. et al. Telehealth for global emergencies: implications for coronavirus disease 2019 (COVID-19). J. Telemed. Telecare. 2020;26(5):309–313. DOI: 10.1177/1357633X20916567.

7. Рекомендации ВОЗ для населения. 2020. URL: https://www.who.int/ru/emergencies/diseases/novel-coronavirus-2019/advice-for-public

8. CDC. Coronavirus disease 2019 (COVID-19). Centers for disease control and prevention. URL: https://www.cdc.gov/coronavirus/2019-ncov/global-covid-19/operational-considerations-contact-tracing.html

9. Dobrow M. Caring for people with chronic conditions: a health system perspective. Int. J. Integr. Care. 2009;9(1). DOI: 10.5334/ijic.298.

10. Scott R.E., Mars M. Response to Smith et al. Telehealth for global emergencies: implications for coronavirus disease 2019 (COVID-19). J. Telemed. Telecare. 2020;26(6):378–380. DOI: 10.1177/1357633X20932416.

11. O’Hara V.M., Johnston S.V., Browne N.T. The paediatric weight management office visit via telemedicine: pre‐ to post‐ COVID‐19 pandemic. Pediatr. Obes. 2020;15(8). DOI: 10.1111/ijpo.12694.

12. NCDs. Assessing national capacity for the prevention and control of NCDs. WHO. 2020. URL: http://www.who.int/ncds/surveillance/ncd-capacity/en/

13. Кобякова О.С., Деев И.А., Куликов Е.С., Старовойтова Е.А., Малых Р.Д., Балаганская М.А., Загромова Т.А. Хронические неинфекционные заболевания: эффекты сочетанного влияния факторов риска. Профилактическая медицина. 2019;22(2):45. DOI: 10.17116/profmed20192202145.

14. Cruz-Martínez R.R., Wentzel J., Asbjørnsen R.A. et al. Supporting self-management of cardiovascular diseases through remote monitoring technologies: metaethnography review of frameworks, models, and theories used in research and development. J. Med. Internet. Res. 2020;22(5):e16157. DOI: 10.2196/16157.

15. Varma N., Epstein A.E., Irimpen A., Schweikert R., Love C. Efficacy and safety of automatic remote monitoring for implantable cardioverter-defibrillator follow-up: the lumos-t safely reduces routine office device follow-up (TRUST) trial. Circulation. 2010;122(4):325–332. DOI: 10.1161/CIRCULATIONAHA.110.937409.

16. Mendes-Ferreira P., Maia-Rocha C, Adao R. et al. Targeting pulmonary artery pressures in the treatment of chronic heart failure: insights from the CHAMPION trial. Eur. Heart J. 2012;33(1):339–653. DOI: 10.1093/eurheartj/ehs282.

17. Lim P., Lee A., Chua K. et al. Remote monitoring of patients with cardiac implantable electronic devices: a Southeast Asian, single-centre pilot study. Singapore Med. J. 2016;57(07):372–377. DOI: 10.11622/smedj.2016120.

18. Guedon-Moreau L., Lacroix D., Sadoul N. et al. A randomized study of remote follow-up of implantable cardioverter defibrillators: safety and efficacy report of the ECOST trial. Eur. Heart J. 2013;34(8):605–614. DOI: 10.1093/eurheartj/ehs425.

19. Mabo P., Victor F., Bazin P. et al. A randomized trial of long-term remote monitoring of pacemaker recipients (The COMPAS trial). Eur. Heart J. 2012;33(9):1105–1111. DOI: 10.1093/eurheartj/ehr419.

20. Versteeg H., Timmermans I., Widdershoven J. et al. Effect of remote monitoring on patient-reported outcomes in European heart failure patients with an implantable cardioverter-defibrillator: primary results of the REMOTE-CIED randomized trial. EP Eur. 2019;21(9):1360–1368. DOI: 10.1093/europace/euz140.

21. Crossley G.H., Boyle A., Vitense H., Chang Y., Mead R.H. The CONNECT (clinical evaluation of remote notification to reduce time to clinical decision) trial. J. Am. Coll. Cardiol. 2011;57(10):1181–1189. DOI: 10.1016/j.jacc.2010.12.012.

22. Abraham W.T., Stevenson L.W., Bourge R.C., Lindenfeld J.A., Bauman J.G., Adamson P.B. Sustained efficacy of pulmonary artery pressure to guide adjustment of chronic heart failure therapy: complete follow-up results from the CHAMPION randomised trial. Lancet. 2016;387(10017):453–461. DOI: 10.1016/S0140-6736(15)00723-0.

23. Abraham W.T., Adamson P.B., Bourge R.C. et al. Wireless pulmonary artery haemodynamic monitoring in chronic heart failure: a randomised controlled trial. Lancet. 2011;377(9766):658–666. DOI: 10.1016/S0140-6736(11)60101-3.

24. Adamson P.B., Abraham W.T., Aaron M. et al. CHAMPION trial rationale and design: the long-term safety and clinical efficacy of a wireless pulmonary artery pressure monitoring system. J. Card. Fail. 2011;17(1):3–10. DOI: 10.1016/j.cardfail.2010.08.002.

25. Heywood J.T., Jermyn R., Shavelle D. et al. Impact of practice-based management of pulmonary artery pressures in 2000 patients implanted with the CardioMEMS sensor. Circulation. 2017;135(16):1509–1517. DOI: 10.1161/CIRCULATIONAHA.116.026184.

26. Yousefian O., Wolfson A., Shavelle D. Remote haemodynamic monitoring in patients excluded from champion trial. J. Investig. Med. 2018;66(1). DOI: 10.1136/jim-2017-000663.13.

27. McKinstry B., Hanley J., Wild S. et al. Telemonitoring based service redesign for the management of uncontrolled hypertension: multicentre randomised controlled trial. BMJ. 2013;346(may24 4):f3030-f3030. DOI: 10.1136/bmj.f3030.

28. Evans J., Papadopoulos A., Silvers C.T. et al. Remote health monitoring for older adults and those with heart failure: adherence and system usability. Telemed. E-health. 2016;22(6):480-488. DOI: 10.1089/tmj.2015.0140.

29. Triantafyllidis A., Velardo C., Chantler T. et al. A personalised mobile-based home monitoring system for heart failure: the SUPPORT-HF study. Int. J. Med. Inf. 2015;84(10):743–753. DOI: 10.1016/j.ijmedinf.2015.05.003.

30. Margolis K.L., Asche S.E., Bergdall A.R. et al. Effect of home blood pressure telemonitoring and pharmacist management on blood pressure control: a cluster randomized clinical trial. JAMA. 2013;310(1):46. DOI: 10.1001/jama.2013.6549.

31. Piotrowicz E., Pencina M.J., Opolski G. et al. Effects of a 9-week hybrid comprehensive telerehabilitation program on long-term outcomes in patients with heart failure: the telerehabilitation in heart failure patients (TELEREH-HF) randomized clinical trial. JAMA Cardiol. 2020;5(3):300. DOI: 10.1001/jamacardio.2019.5006.

32. Piotrowicz E., Baranowski R., Bilinska M. et al. A new model of home-based telemonitored cardiac rehabilitation in patients with heart failure: effectiveness, quality of life, and adherence. Eur. J. Heart Fail. 2010;12(2):164–171. DOI: 10.1093/eurjhf/hfp181.

33. Olivari Z., Giacomelli S., Gubian L. et al. The effectiveness of remote monitoring of elderly patients after hospitalisation for heart failure: the renewing health European project. Int. J. Cardiol. 2018;257:137–142. DOI: 10.1016/j.ijcard.2017.10.099.

34. Halcox J.P. J., Wareham K., Cardew A. et al. Assessment of remote heart rhythm sampling using the alivecor heart monitor to screen for atrial fibrillation: the REHEARSE-AF study. Circulation. 2017;136(19):1784–1794. DOI: 10.1161/CIRCULATIONAHA.117.030583.

35. Reed M.J., Grubb N.R., Lang C.C. et al. Multi-centre randomised controlled trial of a smart phone-based event recorder alongside standard care versus standard care for patients presenting to the emergency department with palpitations and pre-syncope – the IPED (investigation of palpitations in the ED) study: study protocol for a randomised controlled trial. Trials. 2018;19(1):711. DOI: 10.1186/s13063-018-3098-1.

36. Griksaitis M.J., Rosengarten J.A., Gnanapragasam J.P., Haw M.P., Morgan J.M. Implantable cardioverter defibrillator therapy in paediatric practice: a single-centre UK experience with focus on subcutaneous defibrillation. EP Eur. 2013;15(4):523–530. DOI: 10.1093/europace/eus388.

37. Leyva F., Fernandez Lozano I., Morgan J. Cardioverter-defibrillators: a cost or an investment? Europace. 2011;13(2):ii25-ii31. DOI: 10.1093/europace/eur085.

38. Morgan J.M., Kitt S., Gill J. et al. Remote management of heart failure using implantable electronic devices. Eur. Heart J. 2017;38(30):2352–2360. DOI: 10.1093/eurheartj/ehx227.

39. Boriani G., Cimaglia P., Biffi M. et al. Cost-effectiveness of implantable cardioverter-defibrillator in today’s world. Indian. Heart J. 2014;66:S101–S104. DOI: 10.1016/j.ihj.2013.12.034.

40. Vanezis A.P., Arnold J.R., Rodrigo G. et al. Daily remote ischaemic conditioning following acute myocardial infarction: a randomised controlled trial. Heart. 2018;104(23):1955–1962. DOI: 10.1136/heartjnl-2018-313091.

41. Ломидзе Н.Н., Васковский В.А., Яшков М.В., Артюхина Е.А., Ревишвили А.Ш. Возможности и перспективы удаленного мониторинга пациентов с имплантированными устройствами. Комплексные проблемы сердечно-сосудистых заболеваний. 2019;8(2):98–106. DOI: 10.17802/2306-1278-2019-8-2-98-106.

42. Timmermans I. Remote patient monitoring of implantable cardioverter defibrillators: patient satisfaction and preferences for FOLLOW-UP. Psychosom. Med. 2018;80(3):A1. DOI: 10.1097/PSY.0000000000000578.

43. ВОЗ. Программа по борьбе с хроническими респираторными заболеваниями. URL: https://www.who.int/respiratory/about_us/ru/

44. Lilholt P.H., Witt Udsen F., Ehlers L., Hejlesen O.K. Telehealthcare for patients suffering from chronic obstructive pulmonary disease: effects on health-related quality of life: results from the Danish ‘TeleCare North’ cluster-randomised trial. BMJ Open. 2017;7(5):e014587. DOI: 10.1136/bmjopen-2016-014587.

45. Walker P.P., Pompilio P.P., Zanaboni P. et al. Telemonitoring in chronic obstructive pulmonary disease (CHROMED). A randomized clinical trial. Am. J. Respir. Crit. Care Med. 2018;198(5):620–628. DOI: 10.1164/rccm.201712-2404OC.

46. Vianello A., Fusello M., Gubian L. et al. Home telemonitoring for patients with acute exacerbation of chronic obstructive pulmonary disease: a randomized controlled trial. BMC Pulm. Med. 2016;16(1):157. DOI: 10.1186/s12890-016-0321-2.

47. Pinnock H., Hanley J., McCloughan L. et al. Effectiveness of telemonitoring integrated into existing clinical services on hospital admission for exacerbation of chronic obstructive pulmonary disease: researcher blind, multicentre, randomised controlled trial. BMJ. 2013;347(173):f6070–f6070. DOI: 10.1136/bmj.f6070.

48. Rixon L., Hirani S.P., Cartwright M. et al. A RCT of telehealth for COPD patient’s quality of life: the whole system demonstrator evaluation: COPD patient’s quality of life. Clin. Respir J. 2017;11(4):459–469. DOI: 10.1111/crj.12359.

49. Farmer A., Williams V., Velardo C. et al. Self-management support using a digital health system compared with usual care for chronic obstructive pulmonary disease: randomized controlled trial. J. Med. Internet. Res. 2017;19(5):e144. DOI: 10.2196/jmir.7116.

50. Sirichana V.I., Patel M.H., Wang X. et al. Choices of spirometry measures for remote patient monitoring in COPD. In: B43. COPD: screening and diagnostic tools. American Thoracic Society International Conference Abstracts. American Thoracic Society; 2014:A2971–A2971. DOI: 10.1164/ajrccm-conference.2014.189.1_MeetingAbstracts.A2971.

51. Makhinova T., Barner J.C., Richards K.M., Rascati K.L. Asthma controller medication adherence, risk of exacerbation, and use of rescue agents among texas medicaid patients with persistent asthma. J. Manag. Care Spec. Pharm. 2015;21(12):1124-1132. DOI: 10.18553/jmcp.2015.21.12.1124.

52. Barrett M.A., Humblet O., Marcus J.E. et al. Effect of a mobile health, sensor-driven asthma management platform on asthma control. Ann. Allergy Asthma Immunol. 2017;119(5):415–421. e1. DOI: 10.1016/j.anai.2017.08.002.

53. Merchant R.K., Inamdar R., Quade R.C. Effectiveness of population health management using the propeller health asthma platform: a randomized clinical trial. J. Allergy Clin. Immunol. Pract. 2016;4(3):455–463. DOI: 10.1016/j.jaip.2015.11.022.

54. Kew K.M., Cates C.J. Remote versus face-to-face checkups for asthma. Cochrane Database Syst. Rev. 2016. DOI: 10.1002/14651858.CD011715.pub2.

55. De Jongste J.C., Carraro S., Hop W.C., the CHARISM Study Group, Baraldi E. Daily telemonitoring of exhaled nitric oxide and symptoms in the treatment of childhood asthma. Am. J. Respir. Crit. Care Med. 2009;179(2):93–97. DOI: 10.1164/rccm.200807-1010OC.

56. IDF Diabetes Atlas 9th edition 2019. URL: https://www.diabetesatlas.org/en/

57. Lee J.Y., Wong C.P., Tan C.S.S., Nasir N.H., Lee S.W.H. Telemonitoring in fasting individuals with type 2 diabetes mellitus during ramadan: prospective, randomised controlled study. Sci. Rep. 2017;7(1):10119. DOI: 10.1038/s41598-017-10564-y.

58. Michaud T.L., Siahpush M., Schwab R.J. et al. Remote patient monitoring and clinical outcomes for postdischarge patients with type 2 diabetes. Popul. Health Manag. 2018;21(5):387 DOI: 10.1089/pop.2017.0175.

59. Steventon A., Bardsley M., Doll H., Tuckey E., Newman S.P. Effect of telehealth on glycaemic control: analysis of patients with type 2 diabetes in the Whole Systems Demonstrator cluster randomised trial. BMC Health Serv. Res. 2014;14(1):334. DOI: 10.1186/1472-6963-14-334.

60. Wild S.H., Hanley J., Lewis S.C. et al. Supported telemonitoring and glycemic control in people with type 2 diabetes: the telescot diabetes pragmatic multicenter randomized controlled trial. PLOS Med. 2016;13(7):e1002098. DOI: 10.1371/journal.pmed.1002098.

61. Jeong J.Y., Jeon J.-H., Bae K.-H. et al. Smart care based on telemonitoring and telemedicine for type 2 diabetes care: multi-center randomized controlled trial. Telemed. E-Health. 2018;24(8):604–613. DOI: 10.1089/tmj.2017.0203.

62. Dario C., Toffanin R., Calcaterra F. et al. Telemonitoring of type 2 diabetes mellitus in Italy. Telemed E-Health. 2017;23(2):143–152. DOI: 10.1089/tmj.2015.0224.

63. Лебедев Г.С., Шадеркин И.А., Фомина И.В. и др. Основные направления развития интернет-технологий в здравоохранении (систематический обзор). Социальные аспекты здоровья населения. 2017;57(5). URL: https://cyberleninka.ru/article/n/osnovnye-napravleniya-razvitiya-internet-tehnologiy-v-zdravoohranenii-sistematicheskiy-obzor

64. Pounds G., Murphy J.J. Remote monitoring of ILRs, when is more too much? EP Eur. 2017;19(1):i57. DOI: 10.1093/europace/eux283.133.

65. Heidbuchel H., Hindricks G., Broadhurst P. et al. EuroEco (European health economic trial on home monitoring in ICD patients): a provider perspective in five European countries on costs and net financial impact of follow-up with or without remote monitoring. Eur. Heart J. 2015;36(3):158–169. DOI: 10.1093/eurheartj/ehu339.

66. Massaroni C., Nicolò A., Schena E., Sacchetti M. Remote respiratory monitoring in the time of COVID-19. Front Physiol. 2020;11:635. DOI: 10.3389/fphys.2020.00635.

67. Guzik T.J., Mohiddin S.A., Dimarco A. et al. COVID-19 and the cardiovascular system: implications for risk assessment, diagnosis, and treatment options. Cardiovasc Res. 2020;116(10):1666–1687. DOI: 10.1093/cvr/cvaa106.

68. Barney A., Buckelew S., Mesheriakova V., Raymond-Flesch M. The COVID-19 pandemic and rapid implementation of adolescent and young adult telemedicine: challenges and opportunities for innovation. J. Adolesc. Health. 2020;67(2):164–171. DOI: 10.1016/j.jadohealth.2020.05.006.

69. Prasad A., Brewster R., Newman J.G., Rajasekaran K. Optimizing your telemedicine visit during the COVID ‐19 pandemic: practice guidelines for patients with head and neck cancer. Head Neck. 2020;42(6):1317–1321. DOI: 10.1002/hed.26197.

70. Capucci A., De Simone A., Luzi M. et al. Economic impact of remote monitoring after implantable defibrillators implantation in heart failure patients: an analysis from the EFFECT study. EP Eur. 2017;19(9):1493–1499. DOI: 10.1093/europace/eux017.

71. Klersy C., De Silvestri A., Gabutti G. et al. Economic impact of remote patient monitoring: an integrated economic model derived from a meta-analysis of randomized controlled trials in heart failure. Eur. J. Heart Fail. 2011;13(4):450–459. DOI: 10.1093/eurjhf/hfq232.

72. Hummel J.P., Leipold R.J., Amorosi S.L. et al. Outcomes and costs of remote patient monitoring among patients with implanted cardiac defibrillators: an economic model based on the PREDICT RM database. J. Cardiovasc. Electrophysiol. 2019;30(7):1066–1077. DOI: 10.1111/jce.13934.

73. Sheppard J.P., Tucker K.L., Davison W.J. et al. Self-monitoring of blood pressure in patients with hypertension-related multi-morbidity: systematic review and individual patient data meta-analysis. Am. J. Hypertens. 2019:hpz182. DOI: 10.1093/ajh/hpz182.

74. Sterling R., LeRouge C. On-demand telemedicine as a disruptive health technology: qualitative study exploring emerging business models and strategies among early adopter organizations in the United States. J. Med. Internet Res. 2019;21(11):e14304. DOI: 10.2196/14304.


Рецензия

Для цитирования:


Кобякова О.С., Деев И.А., Тюфилин Д.С., Александров Г.О., Куликов Е.С. Удаленный мониторинг хронических неинфекционных заболеваний: потенциал в условиях пандемии COVID-19. Бюллетень сибирской медицины. 2022;21(1):109-120. https://doi.org/10.20538/1682-0363-2022-1-109-120

For citation:


Kobyakova O.S., Deev I.A., Tyufilin D.S., Alexandrov G.O., Kulikov E.S. Remote monitoring of chronic noncommunicable diseases: potential in the COVID-19 pandemic. Bulletin of Siberian Medicine. 2022;21(1):109-120. https://doi.org/10.20538/1682-0363-2022-1-109-120

Просмотров: 747


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 1682-0363 (Print)
ISSN 1819-3684 (Online)