Preview

Bulletin of Siberian Medicine

Advanced search

Molecular genetic markers of QT interval duration and sudden cardiac death: literature review

https://doi.org/10.20538/1682-0363-2022-1-133-143

Abstract

The study of sudden cardiac death (SCD) and its etiopathogenesis in cardiology practice remains one of the most pressing public health problems. In Western countries, SCD accounts for 20% of the total mortality and 50% of mortality associated with cardiovascular diseases. Considering the electrical instability in the myocardium as one of the main reasons for the development of life-threatening arrhythmias (ventricular tachycardia / ventricular fibrillation) and SCD, one should be aware of such provoking factors as ischemic heart disease, myocarditis, valvular heart disease, pharmacological influences, cardiomyopathy, and channelopathy. An increase or decrease in the duration of the QT interval, which reflects the work of ion channels, as well as ventricular depolarization and repolarization, increases the risk of SCD.

The aim of this review was to study and analyze the available literature data on the relationship of molecular genetic markers with the duration of the QT interval.

Currently, there is a number of genetic studies that allow to identify a large number of mutations and polymorphisms of known genes that affect the variability of the QT interval, showing their significance in risk stratification of sudden arrhythmic death and choosing the right tactics for managing, preventing, and treating patients, thus reducing the risk of SCD. The predictive value of genetic testing is the highest for long QT syndrome (LQTS), for which a gene-specific risk profile has been established, and lower for other channelopathies. A large amount of genetic data may be a promising approach to quantifying the risk of SCD, especially at a young age, which will be facilitated by further study of this problem.

About the Authors

A. M. Nesterets
Federal Research Center “Institute of Cytology and Genetics” of the Siberian Branch, Russian Academy of Sciences (FRC IC&G SB RAS); Research Institute of Internal and Preventive Medicine (IIPM), Branch of the Federal Research Center “Institute of Cytology and Genetics”, Siberian Branch of the Russian Academy of Sciences (FRC IC&G SB RAS)
Russian Federation

10, Akademika Lavrentieva Av., Novosibirsk, 630090
175/1, Borisa Bogatkova Str., Novosibirsk, 630089



V. N. Maksimov
Federal Research Center “Institute of Cytology and Genetics” of the Siberian Branch, Russian Academy of Sciences (FRC IC&G SB RAS); Research Institute of Internal and Preventive Medicine (IIPM), Branch of the Federal Research Center “Institute of Cytology and Genetics”, Siberian Branch of the Russian Academy of Sciences (FRC IC&G SB RAS)
Russian Federation

10, Akademika Lavrentieva Av., Novosibirsk, 630090
175/1, Borisa Bogatkova Str., Novosibirsk, 630089



References

1. Zaman S., Goldberger J.J., Kovoor P. Sudden death risk-stratification in 2018–2019: the old and the new. Heart, Lung and Circ. 2019;28(1):57–64. DOI: 10.1016/j.hlc.2018.08.027.

2. Wong C.X., Brown A., Lau D.H., Chugh S.S., Albert C.M., Kalman J.M. et al. Epidemiology of sudden cardiac death: global and regional perspectives. Heart, Lung and Circ. 2019;28(1):6–14. DOI: 10.1016/j.hlc.2018.08.026.

3. Бойцов С.А., Никулина Н.Н., Якушин С.С., Акинина С.А., Фурменко Г.И. Внезапная сердечная смерть у больных ишемической болезнью сердца по результатам Российского многоцентрового эпидемиологического исследования заболеваемости, смертности, качества диагностики и лечения острых форм ИБС (РЕЗОНАНС). Российский кардиологический журнал. 2011;2(5):9–64.

4. Линчак Р.М., Недбайкин А.М., Семенцова Е.В., Юсова И.А., Струкова В.В. Частота и структура внезапной сердечной смертности трудоспособного населения Брянской области. Данные регистра ГЕРМИНА (регистр внезапной сердечной смертности трудоспособного населения Брянской области). Рациональная фармакотерапия в кардиологии. 2016;12(1):45–50.

5. Adabag A.S., Luepker R.V., Roger V.L., Gersh B.J. Sudden cardiac death: epidemiology and risk factors. Nat. Rev. Cardiol. 2010;7(4):216–225. DOI: 10.1038/nrcardio.2010.3.

6. Zheng Z.J., Croft J.B., Giles W.H., Mensah G.A. Sudden cardiac death in the United States, 1989 to 1998. Circulation. 2001;104:2158–2163. DOI: 10.1161/hc4301.098254.

7. Ghobrial J., Heckbert S.R., Bartz T.M., Lovasi G., Wallace E., Lemaitre R.N. et al. Ethnic differences in sudden cardiac arrest resuscitation. Heart. 2016;102(17):1363–1370. DOI: 10.1136/heartjnl-2015-308384.

8. Вайханская Т.Г., Фролов А.В., Мельникова О.П., Воробьев А.П., Гуль Л.М., Севрук Т.В. и др. Риск-стратификация пациентов с кардиомиопатией с учетом предикторов электрической нестабильности миокарда. Кардиология в Беларуси. 2013;5(30):59–73.

9. Hayashi M., Shimizu W., Albert C.M. The Spectrum of epidemiology underlying sudden cardiac death. Circ. Res. 2015;116 (12):1887–1906. DOI: 10.1161/CIRCRESAHA.116.304521.

10. Kuriachan V.P., Sumner G.L., Mitchell L.B. Sudden cardiac death. Curr. Probl. Cardiol. 2015;40(4):133–200. DOI: 10.1016/j.cpcardiol.2015.01.002.

11. Gray B., Ackerman M.J., Semsarian C., Behr E.R. Evaluation after sudden death in the young: a global approach. Circ. Arrhythm. Electrophysiol. 2019;12(8):e007453. DOI: 10.1161/CIRCEP.119.007453.

12. Jayaraman R., Reinier K., Nair S., Aro A.L., Uy-Evanado A., Rusinaru C. et al. Risk factors of sudden cardiac death in the young: multiple-year community-wide assessment. Circulation. 2018;137(15):1561–1570. DOI: 10.1161/CIRCULATIONAHA.117.031262.

13. Chen L.Y., Sotoodehnia N., Bůžková P., Lopez F.L., Yee L.M., Heckbert S.R. et al. Atrial Fibrillation and the Risk of Sudden Cardiac Death: The Atherosclerosis Risk in Communities (ARIC) Study and Cardiovascular Health Study (CHS). JAMA Intern. Med. 2013;173(1):29–35. DOI: 10.1001/2013.jamainternmed.744.

14. Deo R., Norby F.L., Katz R., Sotoodehnia N., Adabag S., DeFilippi C.R. et al. Development and validation of a sudden cardiac death prediction model for the general population. Circulation. 2016;134(11):806–816. DOI: 10.1161/CIRCULATIONAHA.116.023042.

15. Gami A.S., Olson E.J., Shen W.K., Wright R.S., Ballman K.V., Hodge D.O. et al. Obstructive Sleep Apnea and the Risk of Sudden Cardiac Death: A Longitudinal Study of 10,701 Adults. J. Am. Coll. Cardiol. 2013;62(7):610–616. DOI: 10.1016/j.jacc.2013.04.080.

16. Friedlander Y., Siscovick D.S., Weinmann S., Austin M.A., Psaty B.M., Lemaitre R.N. et al. Family history as a risk factor for primary cardiac arrest. Circulation. 1998;97(2):155–160. DOI: 10.1161/01.cir.97.2.155.

17. Bai R., Napolitano C., Bloise R., Monteforte N., Priori S.G. Yield of genetic screening in inherited cardiac channelopathies: how to prioritize access to genetic testing. Circ. Arrhythm. Electrophysiol. 2009;2(1):6–15. DOI: 10.1161/CIRCEP.108.782888.

18. Ackerman M.J., Priori S.G., Willems S., Berul C., Brugada R., Calkins H. et al. HRS/EHRA expert consensus statement on the state of genetic testing for the channelopathies and cardiomyopathies this document was developed as a partnership between the Heart Rhythm Society (HRS) and the European Heart Rhythm Association (EHRA). Heart Rhythm. 2011;8(8):1308–1339. DOI: 10.1016/j.hrthm.2011.05.020.

19. Crotti L., Marcou C.A., Tester D.J., Castelletti S., Giudicessi J.R., Torchio M. et al. Spectrum and prevalence of mutations involving BrS1- through BrS12-susceptibility genes in a cohort of unrelated patients referred for Brugada syndrome genetic testing: implications for genetic testing. J. Am. Coll. Cardiol. 2012;60(15):1410–1408. DOI: 10.1016/j.jacc.2012.04.037.

20. Van Driest S.L., Ommen S.R., Tajik A.J., Gersh B.J., Ackerman M.J. Yield of genetic testing in hypertrophic cardiomyopathy. Mayo Clin. Proc. 2005;80(6):739–744. DOI: 10.1016/S0025-6196(11)61527-9.

21. Giudicessi J.R., Noseworthy P.A., Ackerman M.J. The QT interval. Circulation. 2019;139:2711–2713. DOI: 10.1161/CIRCULATIONAHA.119.039598.

22. Arking D.E., Pulit S.L., Crotti L., van der Harst P., Munroe P.B., Koopmann T.T. et al. Genetic association study of QT interval highlights role for calcium signaling pathways in myocardial repolarization. Nat. Genet. 2014;46(8):826–836. DOI: 10.1038/ng.3014.

23. Garcia-Elias A., Benito B. Ion channel disorders and sudden cardiac death. J. Mol. Sci. 2018;19(3):692. DOI: 10.3390/ijms19030692.

24. Schwartz P.J., Crotti L., Insolia R. Long QT syndrome: from genetics to management. Circ. Arrhythm. Electrophysiol. 2012;5(4):868–877. DOI: 10.1161/CIRCEP.111.962019.

25. Vandenberk B., Vandael E., Robyns T., Vandenberghe J., Garweg C., Foulon V. et al. Which QT correction formulae to use for QT monitoring? J. Am. Heart Assoc. 2016;5(6):e003264. DOI: 10.1161/JAHA.116.003264.

26. Smulyan H. QT interval: Bazett’s Correction corrected. J. Electrocardiol. 2018;51(6):1009–1010. DOI: 10.1016/j.jelectrocard.2018.08.013.

27. Neira V., Enriquez A., Simpson C., Baranchuk A. Update on long QT syndrome. J. Cardiovasc. Electrophysiol. 2019;30(12):3068–3078. DOI: 10.1111/jce.14227.

28. Marschall C., Moscu-Gregor A., Klein H.G. Variant panorama in 1,385 index patients and sensitivity of expanded next-generation sequencing panels in arrhythmogenic disorders. Cardiovasc. Diagn. Ther. 2019:S292–298. DOI: 10.21037/cdt.2019.06.06.

29. Wallace E., Howard L., Liu M., O’Brien T., Ward D., Shen S. et al. Long QT syndrome: genetics and future perspective. Pediatr. Cardiol. 2019;40(7):1419–1430. DOI: 10.1007/s00246-019-02151-x.

30. Priori S.G., Blomström-Lundqvist C., Mazzanti A., Blom N., Borggrefe M., Camm J. et al. ESC Scientific Document Group. 2015 ESC Guidelines for the management of patients with ventricular arrhythmias and the prevention of sudden cardiac death. Eur. Heart J. 2015;36(41):2793–2867. DOI: 10.1093/eurheartj/ehv316.

31. Schwartz P.J., Ackerman M.J., George A.L. Jr., Wilde A.A.M. Impact of genetics on the clinical management of channelopathies. J. Am. Coll. Cardiol. 2013;62(3):169–180. DOI: 10.1016/j.jacc.2013.04.044.

32. Ohno S., Ozawa J., Fukuyama M., Makiyama T., Horie M. An NGS-based genotyping in LQTS; minor genes are no longer minor. J. Hum. Genet. 2020;65(12):1083–1091. DOI: 10.1038/s10038-020-0805-z.

33. Mizusawa Y., Horie M., Wilde A.A. Genetic and clinical advances in congenital long QT syndrome. Circ. J. 2014;78(12):2827–2833. DOI: 10.1253/circj.CJ-14-0905.

34. Lahrouchi N., Tadros R., Crotti L., Mizusawa Y., Postema P.G., Beekman L. et al. Transethnic Genome-Wide Association Study Provides Insights in the Genetic Architecture and Heritability of Long QT Syndrome. Circulation. 2020;142(4):324–338. DOI: 10.1161/CIRCULATIONAHA.120.045956.

35. Giudicessi J.R., Wilde A.A.M., Ackerman M.J. The genetic architecture of long QT syndrome: A critical reappraisal. Trends Cardiovasc. Med. 2018;(7):453–464. DOI: 10.1016/j.tcm.2018.03.003.

36. Bjerregaard P. Diagnosis and management of short QT syndrome. Heart Rhythm. 2018;15(8):1261–1267. DOI: 10.1016/j.hrthm.2018.02.034.

37. Campuzano O., Fernandez-Falgueras A., Lemus X., Sarquella-Brugada G., Cesar S., Coll M. et al. Short QT syndrome: a comprehensive genetic interpretation and clinical translation of rare variants. J. Clin. Med. 2019;8(7):1035. DOI: 10.3390/jcm8071035.

38. Perike S., McCauley M.D. Molecular insights into short QT syndrome. J. Innov. Card. Rhythm Manag. 2018;9(3):3065-3070. DOI: 10.19102/icrm.2018.090302.

39. Hancox J.C., Whittaker D.G., Du C., Stuart A.G., Zhang H. Emerging therapeutic targets in the short QT syndrome. Expert. Opin. Ther. Targets. 2018;22(5):439–451. DOI: 10.1080/14728222.2018.1470621.

40. Newton-Cheh C., Eijgelsheim M., Rice K.M., de Bakker P.I., Yin X., Estrada K. et al. Common variants at ten loci influence myocardial repolarization: the QTGEN consortium. Nat. Genet. 2009;41(4):399–406. DOI: 10.1038/ng.364

41. Earle N., Yeo Han D., Pilbrow A., Crawford J., Smith W., Shelling A.N. et al. Single nucleotide polymorphisms in arrhythmia genes modify the risk of cardiac events and sudden death in long QT syndrome. Heart Rhythm. 2014;11(1):76–82. DOI: 10.1016/j.hrthm.2013.10.005.

42. Gouas L., Nicaud V., Chaouch S., Berthet M., Forhan A., Tichet J. et al. Confirmation of associations between ion channel gene SNPs and QTc interval duration in healthy subjects. Eur. J. Hum. Genet. 2007;15(9):974–979. DOI: 10.1038/sj.ejhg.5201866.

43. Qureshi S.F., Ali A., John P., Jadhav A.P., Venkateshwari A., Rao H. et al. Mutational analysis of SCN5A gene in long QT syndrome. Meta Gene. 2015;6:26–35. DOI: 10.1016/j.mgene.2015.07.010

44. Bihlmeyer N.A., Brody J.A., Smith A.V., Warren H.R., Lin H., Isaacs A. et al. ExomeChip-Wide analysis of 95 626 individuals identifies 10 novel loci associated with QT and JT intervals. Circ. Genom. Precis. Med. 2018;11(1):e001758. DOI: 10.1161/CIRCGEN.117.001758.


Review

For citations:


Nesterets A.M., Maksimov V.N. Molecular genetic markers of QT interval duration and sudden cardiac death: literature review. Bulletin of Siberian Medicine. 2022;21(1):133-143. https://doi.org/10.20538/1682-0363-2022-1-133-143

Views: 442


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1682-0363 (Print)
ISSN 1819-3684 (Online)