Interferons alpha and gamma, pidotimod, and tilorone in the treatment of acute respiratory infections in patients with allergic rhinitis: a prospective, cohort clinical and immunological study
https://doi.org/10.20538/1682-0363-2022-2-48-59
Abstract
Aim. To compare the clinical efficacy and influence on interferon (IFN) production / sensing of drugs with immunemediated antiviral effects, which potentiate type 1 (T1) immune responses, in the treatment of acute respiratory infections (ARI) in patients with allergic rhinitis.
Materials and methods. 146 ARI patients with remission of seasonal allergic rhinitis were divided into 4 cohorts. In addition to symptomatic therapy, patients received either 2,000 IU of IFNγ in each nasal passage 5 times a day; or rectal suppositories containing 106 IU of IFN-α2b and antioxidants (AO) twice a day, and a gel with IFN-α2b and AO intranasally 3 times a day; or 400 mg of pidotimod per os twice a day; or 125 mg of tilorone per os on days 1, 2, 4, and 6. The severity of ARI was determined daily as the sum of 10-point scores for 15 symptoms. Serum concentrations of IFNα and IFNγ and the ability of blood cells to produce these cytokines ex vivo spontaneously and upon stimulation with Newcastle disease virus or phytohemagglutinin were studied using enzyme-linked immunosorbent assay (ELISA). The proportions of circulating lymphocytes expressing type I IFN receptor subunit 2 (CD118) or IFNγ receptor α-chain (CD119) were determined by flow cytometry.
Results. ARI symptoms in all cohorts generally regressed in a similar way. However, from day 5 of the treatment, pidotimod relieved symptoms more effectively than other drugs. In patients treated with tilorone, the regression of ARI manifestations was delayed in the first two to three days, followed by rapid symptom reduction. An initial decrease in the induced production of IFNγ was found in patients treated with pidotimod, and a tendency to a decrease in this parameter was noted in other cohorts. The induced production of IFNγ after the treatment in all groups did not differ from that in healthy donors. No significant changes and differences in the proportions of CD118+ and CD119+ lymphocytes were found between the cohorts, except for a decrease in the number of CD118+ cells after the treatment with tilorone. In patients treated with IFN-α2b + AO, the proportions of CD119+ and CD118+ lymphocytes tended to increase slightly.
Conclusion. Drugs that promote the development of T1 over T2 immune responses are a useful option for treating ARI in patients with allergic rhinitis.
About the Authors
O. V. KalyuzhinRussian Federation
8/2, Trubetskaya Str., Moscow, 119991
L. O. Ponezheva
Russian Federation
8/2, Trubetskaya Str., Moscow, 119991
A. N. Turapova
Russian Federation
3a, Novogireevskaya Str., Moscow, 111123
A. Yu. Nurtazina
Russian Federation
8/2, Trubetskaya Str., Moscow, 119991
A. S. Bykov
Russian Federation
8/2, Trubetskaya Str., Moscow, 119991
A. V. Karaulov
Russian Federation
8/2, Trubetskaya Str., Moscow, 119991
References
1. Gentile D.A., Fireman P., Skoner D.P. Elevations of local leukotriene C4 levels during viral upper respiratory tract infections. Ann. Allergy Asthma Immunol. 2003;91(3):270–274. DOI: 10.1016/S1081-1206(10)63529-6.
2. Graham A.C., Temple R.M., Obar J.J. Mast cells and influenza a virus: association with allergic responses and beyond. Front. Immunol. 2015;6:238. DOI: 10.3389/fimmu.2015.00238.
3. Nijkamp F.P., Sitsen J.M. Leukotrienes, allergy and inflammation. Pharm. Weekbl. Sci. 1982;4(6):165–171. DOI: 10.1007/BF01959134.
4. Skoner D.P., Gentile D.A., Fireman P., Cordoro K., Doyle W.J. Urinary histamine metabolite elevations during experimental influenza infection. Ann. Allergy Asthma Immunol. 2001;87(4):303–306. DOI: 10.1016/s1081-1206(10)62244-2.
5. Ricciotti E., FitzGerald G.A. Prostaglandins and inflammation. Arterioscler. Thromb. Vasc. Biol. 2011;31(5):986–1000. DOI: 10.1161/ATVBAHA.110.207449.
6. Kubo M. Innate and adaptive type 2 immunity in lung allergic inflammation. Immunol. Rev. 2017;278(1):162–172. DOI: 10.1111/imr.12557.
7. Scadding G.K., Scadding G.W. Innate and adaptive immunity: ILC2 and Th2 cells in upper and lower airway allergic diseases. J. Allergy Clin. Immunol. Pract. 2021;9(5):1851–1857. DOI: 10.1016/j.jaip.2021.02.013.
8. Norlander A.E., Peebles R.S. Jr. Innate type 2 responses to respiratory syncytial virus infection. Viruses. 2020;12(5):521. DOI: 10.3390/v12050521.
9. Rajput C., Han M., Ishikawa T., Lei J., Goldsmith A.M., Jazaeri S. et al. Rhinovirus C infection induces type 2 innate lymphoid cell expansion and eosinophilic airway inflammation. Front. Immunol. 2021;12:649520. DOI: 10.3389/fimmu.2021.649520.
10. Basnet S., Palmenberg A.C., Gern J.E. Rhinoviruses and their receptors. Chest. 2019;155(5):1018–1025. DOI: 10.1016/j.chest.2018.12.012.
11. Wang S.Z., Ma F.M., Zhao J.D. Expressions of nuclear factor-kappa B p50 and p65 and their significance in the up-regulation of intercellular cell adhesion molecule-1 mRNA in the nasal mucosa of allergic rhinitis patients. Eur. Arch. Otorhinolaryngol. 2013;270(4):1329–1334. DOI: 10.1007/s00405-012-2136-y.
12. Wegner C.D., Gundel R.H., Reilly P., Haynes N., Letts L.G., Rothlein R. Intercellular adhesion molecule-1 (ICAM-1) in the pathogenesis of asthma. Science. 1990;247(4941):456– 459. DOI: 10.1126/science.1967851.
13. Papi A., Johnston S.L. Rhinovirus infection induces expression of its own receptor intercellular adhesion molecule 1 (ICAM-1) via increased NF-kappaB-mediated transcription. J. Biol. Chem. 1999;274(14):9707–9720. DOI: 10.1074/jbc.274.14.9707.
14. Zhou B., Niu W., Liu F., Yuan Y., Wang K., Zhang J. et al. Risk factors for recurrent respiratory tract infection in preschool-aged children. Pediatr. Res. 2021;90(1):223–231. DOI: 10.1038/s41390-020-01233-4.
15. Canonica G.W., Compalati E. Minimal persistent inflammation in allergic rhinitis: implications for current treatment strategies. Clin. Exp. Immunol. 2009;158(3):260–271. DOI: 10.1111/j.1365-2249.2009.04017.x.
16. Schroder K., Hertzog P.J., Ravasi T., Hume D.A. Interferon-gamma: an overview of signals, mechanisms and functions. J. Leukoc. Biol. 2004;75(2):163–189. DOI: 10.1189/jlb.0603252.
17. Brinkmann V., Geiger T., Alkan S., Heusser C.H. Interferon alpha increases the frequency of interferon gamma-producing human CD4+ T cells. J. Exp. Med. 1993;178(5):1655–1663. DOI: 10.1084/jem.178.5.1655.
18. Wenner C.A., Güler M.L., Macatonia S.E., O’Garra A., Murphy K.M. Roles of IFN-gamma and IFN-alpha in IL12-induced T helper cell-1 development. J. Immunol. 1996;156(4):1442–1447.
19. Niu H., Wang R., Jia Y.T., Cai Y. Pidotimod, an immunostimulant in pediatric recurrent respiratory tract infections: A meta-analysis of randomized controlled trials. Int. Immunopharmacol. 2019;67:35–45. DOI: 10.1016/j.intimp.2018.11.043.
20. Vargas Correa J.B., Espinosa Morales S., Bolaños Ancona J.C., Farfán Ale J.A. Pidotimod en infección respiratoria recurrente en el niño con rinitis alérgica, asma o ambos padecimientos [Pidotimod in recurring respiratory infection in children with allergic rhinitis, asthma, or both conditions]. Rev. Alerg. Mex. 2002;49(2):27–32. (In Span.).
21. Ferrario B.E., Garuti S., Braido F., Canonica G.W. Pidotimod: the state of art. Clin. Mol. Allergy. 2015;13(1):8. DOI: 10.1186/s12948-015-0012-1.
22. Manti S., Parisi G.F., Papale M., Leonardi S. Pidotimod in allergic diseases. Minerva Pediatr. 2020;72:358–363. DOI: 10.23736/S0026-4946.20.05967-8.
23. Krueger R.E., Mayer G.D. Tilorone hydrochloride: an orally active antiviral agent. Science. 1970;169:1213–1214. DOI: 10.1126/science.169.3951.1213.
24. Григорян С.С., Исаева Е.И., Бакалов В.В., Осипова Е.А., Бевз А.Ю., Простяков И.В. и др. Амиксин – индукция интерферонов альфа, бета, гамма и лямбда в сыворотке крови и легочной ткани. Русский медицинский журнал. Медицинское обозрение. 2015;2:93–99.
25. Калюжин О.В., Исаева Е.И., Ветрова Е.Н., Чернышова А.И., Понежева Л.О., Караулов А.В. Влияние тилорона на динамику вирусной нагрузки и содержания интерферонов и интерлейкина-1β в лёгочной ткани и сыворотке крови мышей с экспериментальным гриппом. Бюллетень экспериментальной биологии и медицины. 2021;171(6):724–728. DOI: 10.47056/0365-9615-2021-171-6-724-728.
26. Понежева Л.О., Исаева Е.И., Ветрова Е.Н., Григорян С.С., Чернышова А.И., Калюжин О.В. и др. Влияние тилорона на вирусную нагрузку и баланс цитокинов, отражающих 1-й и 2-й типы иммунного ответа, в легочной ткани мышей с экспериментальным гриппом. Инфекционные болезни в современном мире: эволюция, текущие и будущие угрозы: сборник трудов ХIII ежегодного всероссийского конгресса по инфекционным болезням имени академика В.И. Покровского (24–26 мая 2021 г.; Москва). М.: Медицинское Маркетинговое Агентство, 2021:231.
27. Григорян С.С., Майоров И.А., Иванова А.М., Ершов Ф.И. Оценка интерферонового статуса по пробам цельной крови. Вопросы вирусологии. 1988;4:433–436.
28. Калюжин О.В., Понежева Ж.Б., Купченко А.Н., Шувалов А.Н., Гусева Т.С., Паршина О.В. и др. Клиническая и интерферон-модулирующая эффективность комбинации ректальной и топической форм интерферона-α2b при острых респираторных инфекциях. Терапевтический архив. 2018;90(11):48–54. DOI: 10.26442/terarkh201890114-54.
29. Калюжин О.В., Понежева Ж.Б., Семенова И.В., Хохлова О.Н., Серебровская Л.В., Гусева Т.С. и др. Субпопуляции лимфоцитов, уровень интерферонов и экспрессия их рецепторов у больных хроническими гепатитами В и С: зависимость от вида вирусов и степени фиброза печени. Терапевтический архив. 2017;89(11):14–20. DOI: 10.17116/terarkh2017891114-20.
30. Калюжин О.В. Тилорон как средство выбора для профилактики и лечения острых респираторных вирусных инфекций. Лечащий врач. 2013;10:43–48.
31. Brindisi G., Zicari A.M., Schiavi L., Gori A., Conte M.P., Marazzato M. et al. Efficacy of Pidotimod use in treating allergic rhinitis in a pediatric population. Ital. J. Pediatr. 2020;46(1):93. DOI: 10.1186/s13052-020-00859-8.
32. Feleszko W., Rossi G.A., Krenke R., Canonica G.W., Van Gerven L., Kalyuzhin O. Immunoactive preparations and regulatory responses in the respiratory tract: potential for clinical application in chronic inflammatory airway diseases. Expert Rev. Respir. Med. 2020;14(6):603–619. DOI: 10.1080/17476348.2020.1744436.
33. Mühl H., Pfeilschifter J. Anti-inflammatory properties of pro-inflammatory interferon-gamma. Int. Immunopharmacol. 2003;3(9):1247–1255. DOI: 10.1016/S1567-5769(03)00131-0.
34. Billiau A. Anti-inflammatory properties of type I interferons. Antiviral. Res. 2006;71(2-3):108–116. DOI: 10.1016/j.antiviral.2006.03.006.
35. Kumar K.G., Tang W., Ravindranath A.K., Clark W.A., Croze E., Fuchs S.Y. SCF(HOS) ubiquitin ligase mediates the ligand-induced down-regulation of the interferon-alpha receptor. EMBO J. 2003;22(20):5480–5490. DOI: 10.1093/emboj/cdg524.
36. Thomas C., Moraga I., Levin D., Krutzik P.O., Podoplelova Y., Trejo A. et al. Structural linkage between ligand discrimination and receptor activation by type I interferons. Cell. 2011;146(4):621–32. DOI: 10.1016/j.cell.2011.06.048.
37. Lavoie T.B., Kalie E., Crisafulli-Cabatu S., Abramovich R., DiGioia G., Moolchan K. et al. Binding and activity of all human alpha interferon subtypes. Cytokine. 2011;56(2):282– 289. DOI: 10.1016/j.cyto.2011.07.019.
38. Wilmes S., Beutel O., Li Z., Francois-Newton V., Richter C.P., Janning D. et al. Receptor dimerization dynamics as a regulatory valve for plasticity of type I interferon signaling. J. Cell. Biol. 2015;209(4):579–593. DOI: 10.1083/jcb.201412049.
39. Celada A., Schreiber R.D. Internalization and degradation of receptor-bound interferon-gamma by murine macrophages. Demonstration of receptor recycling. J. Immunol. 1987;139(1):147–153.
40. Crisler W.J., Eshleman E.M., Lenz L.L. Ligand-induced IFNGR1 down-regulation calibrates myeloid cell IFNγ responsiveness. Life Sci. Alliance. 2019;2(5):e201900447. DOI: 10.26508/lsa.201900447.
41. Rayamajhi M., Humann J., Penheiter K., Andreasen K., Lenz L.L. Induction of IFN-alphabeta enables Listeria monocytogenes to suppress macrophage activation by IFN-gamma. J. Exp. Med. 2010;207(2):327–337. DOI: 10.1084/jem.20091746.
42. Marijanovic Z., Ragimbeau J., van der Heyden J., Uzé G., Pellegrini S. Comparable potency of IFNalpha2 and IFNbeta on immediate JAK/STAT activation but differential down-regulation of IFNAR2. Biochem. J. 2007;407(1):141–151. DOI: 10.1042/BJ20070605.
Review
For citations:
Kalyuzhin O.V., Ponezheva L.O., Turapova A.N., Nurtazina A.Yu., Bykov A.S., Karaulov A.V. Interferons alpha and gamma, pidotimod, and tilorone in the treatment of acute respiratory infections in patients with allergic rhinitis: a prospective, cohort clinical and immunological study. Bulletin of Siberian Medicine. 2022;21(2):48-59. https://doi.org/10.20538/1682-0363-2022-2-48-59