Evaluation of the cytotoxic activity and toxicity of a tropolone derivative with a potential antitumor effect
https://doi.org/10.20538/1682-0363-2022-2-60-66
Abstract
The aim. To study the toxicity of 2-(6,8-dimethyl-5-nitro-4-chloroquinoline-2-yl)-5,6,7-trichloro-1,3-tropolone in vitro and in vivo.
Materials and methods. 2-(6,8-dimethyl-5-nitro-4-chloroquinoline-2-yl)-5,6,7-trichloro-1,3-tropolone was synthesized using a method for expanding the o-quinone cycle during the reaction between 5-nitro-2,6,8-trimethyl4-chloroquinoline and 3,4,5,6-tetrachloro-1,2-benzoquinone while boiled in dioxane. An in vitro experiment was carried out in the human A549 cell line. Cell viability was assessed using the MTT colorimetric assay by reducing the optical density of the experimental samples compared with the control ones. Acute toxicity was studied on 20 BALB/c Nude male mice. The test compound was administered once orally as a suspension in 1% starch gel at three doses: 0.0055 (group 1), 0.055 (group 2) and 0.55 mg / g (group 3). The control group (group 4) received a placebo.
Results. We synthesized a new compound, 2-(6,8-dimethyl-5-nitro-4-chloroquinoline-2-yl)-5,6,7-trichloro-1,3-tropolone. Its structure was established by 1 H nuclear magnetic resonance (NMR), infrared (IR) spectroscopy, and mass spectrometry. The yield was 19.8 g (52%), the melting point was 205–207 ºС, bright yellow crystals (benzene) were observed. The half-maximal inhibitory concentration (IC50) of 2-(6,8-dimethyl-5-nitro-4-chloroquinoline-2-yl)-5,6,7-trichloro-1,3-tropolone was 0.21 ± 0.01 μM, which was significantly lower (р < 0.05) than the IC50 of cisplatin (3.84 ± 0.23). Following the in vivo experiment, no toxic effect of tropolone was detected when administered once at a dose of 0.0055, 0.055, and 0.55 mg / g.
Conclusion. 2-(6,8-dimethyl-5-nitro-4-chloroquinoline-2-yl)-5,6,7-trichloro-1,3-tropolone demonstrated cytotoxic effects on the A549 cell line at a lower IC50 than cisplatin which is widely used in treatment of cancers, including lung cancer. Insolubility of 2-(6,8-dimethyl-5-nitro-4-chloroquinoline-2-yl)-5,6,7-trichloro-1,3-tropolone in water and the absence of its toxic effect in the studied modes determine the scope of its application for further study of cumulative and antitumor effects.
About the Authors
O. I. KitRussian Federation
63, 14th Liniya, Rostov-on-Don, 344037
V. I. Minkin
Russian Federation
194/2, Stachki Av., Rostov-on-Don, 344090,
41, Chekhova Av., Rostov-on-Don, 344006
E. A. Lukbanova
Russian Federation
63, 14th Liniya, Rostov-on-Don, 344037
Yu. A. Sayapin
Russian Federation
41, Chekhova Av., Rostov-on-Don, 344006
E. A. Gusakov
Russian Federation
194/2, Stachki Av., Rostov-on-Don, 344090
A. O. Sitkovskaya
Russian Federation
63, 14th Liniya, Rostov-on-Don, 344037
S. Yu. Filippova
Russian Federation
63, 14th Liniya, Rostov-on-Don, 344037
E. F. Komarova
Russian Federation
63, 14th Liniya, Rostov-on-Don, 344037,
29, Nakhichevanskiy Av., Rostov-on-Don, 344022
A. V. Volkova
Russian Federation
63, 14th Liniya, Rostov-on-Don, 344037
D. V. Khodakova
Russian Federation
63, 14th Liniya, Rostov-on-Don, 344037
M. V. Mindar
Russian Federation
63, 14th Liniya, Rostov-on-Don, 344037
Yu. N. Lazutin
Russian Federation
63, 14th Liniya, Rostov-on-Don, 344037
M. A. Engibaryan
Russian Federation
63, 14th Liniya, Rostov-on-Don, 344037
V. E. Kolesnikov
Russian Federation
63, 14th Liniya, Rostov-on-Don, 344037
References
1. Sayapin Yu.A., Bang D.N., Komissarov V.N., Dorogan I.V., Makarova N.I., Bondareva I.O. et al. Synthesis, structure, and photoisomerization of derivatives of 2-(2-quinolyl)-1,3-tropolones prepared by the condensation of 2-methylquinolines with 3,4,5,6-tetrachloro-1,2-benzoquinone. Tetrahedron. 2010;66(45):8763–8771. DOI: 10.1016/j.tet.2010.08.077.
2. Кит О.И., Франциянц Е.М., Меньшенина А.П., Миосеенко Т.И., Ушакова Н.Д., Попова Н.Н., Якунин А.В. Роль плазмофереза и ксенонтерапии в коррекции острых последствий хирургической менопаузы у больных раком шейки матки. Политематический сетевой электронный научный журнал Кубанского государственного аграрного университета. 2016;117:472–486.
3. Бурнашева Е.В., Шатохин Ю.В., Снежко И.В., Мацуга А.А. Поражение почек при противоопухолевой терапии. Нефрология. 2018;22(5):17–24. DOI: 10.24884/1561-6274-2018-22-5-17-24.
4. Coburn J.M., Kaplan D.L. Engineering biomaterial-drug conjugates for local and sustained chemotherapeutic delivery. Bioconjug Chem. 2015;26(7):1212–1223. DOI: 10.1021/acs.bioconjchem.5b00046.
5. Владимирова Л.Ю., Сторожакова А.Э., Калабанова Е.А., Вереникина Е.В., Кабанов С.Н., Светитская Ю.В. и др. Опыт применения бевацизумаба в поддерживающей терапии у больных раком яичников. Южно-Российский онкологический журнал. 2020;1(3):67–74. DOI: 10.37748/2687-0533-2020-1-3-7.
6. Максимов А.Ю., Лукбанова Е.А., Саяпин Ю.А., Гусаков Е.А., Гончарова А.С., Лизенко И.В. и др. Противоопухолевая активность алкалоидов трополонового ряда in vitro и in vivo. Современные проблемы науки и образования. 2020;2:169–169. DOI: 10.17513/spno.29722.
7. Зыонг Нгиа Банг, Саяпин Ю.А., Хоанг Лам, Нгуен Данг Дык, Комиссаров В.Н. Синтез и цитотоксическая активность производных [бензо[b][1,4]оксазепино[7,6,5-de]хинолин-2- ил]-1,3-трополонов. Химия гетероциклических соединений. 2015;51(3):291–294. DOI: 10.1007/s10593-015-1697-2.
8. Посон П.Л. Химия тропонов и трополонов; пер. с англ. А.С. Хохлова; под ред. чл.-корр. АН СССР М.М. Шемякина. М.: Изд-во иностр. лит., 1956:204.
9. Kantorowski E.J., Kurth M.J. Expansion to seven-membered rings. Tetrahedron. 2000;56(26):4317–4353. DOI: 10.1016/S0040-4020(00)00218-0.
10. Gusakov E.A., Topchu I.A., Mazitova A.M., Dorogan I.V., Bulatov E.R., Serebriiskii I.G. et al. Design, synthesis and biological evaluation of 2-quinolyl-1,3-tropolone derivatives as new anti-cancer agents. RSC Advances. 2021;11(8):4555– 4571. DOI: 10.1039/d0ra10610k.
11. Минкин В.И., Кит О.И., Гончарова А.С., Лукбанова Е.А., Саяпин Ю.А., Гусаков Е.А. и др. Средство, обладающее цитотоксической активностью в отношении культуры клеток немелкоклеточного рака легких А 549. Патент РФ. RU 2741311 C1. Заявка № 2020123736 от 17.07.2020.
12. Berridge M.V., Herst P.M., Tan A.S. Tetrazolium dyes as tools in cell biology: new insights into their cellular reduction. Biotechnology Annual Review. 2005;11:127–152. DOI: 10.1016/S1387-2656(05)11004-7.
13. Russell W.M.S., Birch R.L. The principles of humane experimental technique. Methuen, London; 1959: 258.
14. Szadvari I., Krizanova O., Babula P. Athymic nude mice as an experimental model for cancer treatment. Physiol. Res. 2016;65(4):441–453. DOI: 10.33549/physiolres.933526.
15. Fu W., Lei C., Liu S., Cui Y., Wang C., Qian K. et al. CAR exosomes derived from effector CAR-T cells have potent antitumour effects and low toxicity. Nat. Commun. 2019;10(1): 4355. DOI: 10.1038/s41467-019-12321-3.
16. Методы исследования цитотоксичности при скрининге лекарственных препаратов: учеб.-метод. пособие к практическим занятиям по курсу «Методы скрининга физиологически активных веществ»; А.Г. Иксанова, О.В. Бондарь, К.В. Балакин. Казань: Казанский университет, 2016:40.
17. Jayakumar T., Liu C.-H., Wu G.-Y. et al. Hinokitiol inhibits migration of a549 lung cancer cells via suppression of MMPs and induction of antioxidant enzymes and apoptosis. Int. J. Mol. Sci. 2018;19(4):939. DOI: 10.3390/ijms19040939.
18. Li J., Falcone E.R., Holstein S.A., Anderson A.C., Wright D.L., Wieme A.J. Novel α-substituted tropolones promote potent and selective caspase-dependent leukemia cell apoptosis. Pharmacol. Res. 2016;113(PtA):438–448. DOI: 10.1016/j.phrs.2016.09.020.
19. Van Vuuren J.L., Visser H.G., Schutte-Smith M. Crystal structure of 2-(methyl-amino)-tropone. Acta Crystallogr. E Crystallogr. Commun. 2019;75(Pt8):1128–1132. DOI: 10.1107/S2056989019009502.
20. Kurek J., Kwaśniewska-Sip P., Myszkowski K., Cofta G., Barczyński P., Murias M., Kurczab R., Śliwa P., Przybylski P. Antifungal, anticancer, and docking studies of colchiceine complexes with monovalent metal cation salts. Chem. Biol. Drug Des. 2019;94(5):1930–1943. DOI: 10.1111/cbdd.13583.
21. Li L.-H., Wu P., Lee J.-Y., Li P.-R., Hsieh W.-Y., Ho C.-C. et al. Hinokitiol induces DNA damage and autophagy followed by cell cycle arrest and senescence in gefitinib-resistant lung adenocarcinoma cells. PLoS One. 2014;9(8):e104203. DOI: 10.1371/journal.pone.0104203.
22. Wakabayashi H., Narita T., Suga A. Hormetic response of cultured normal and tumor cells to 2-aminotropone derivatives. In Vivo. 2010;24(1):39–44.
23. Matsumura E., Morita Y., Date T. Cytotoxicity of the hinokitiol-related compounds, γ-thujaplicin and β–dolabrin. Biol. Pharm. Bull. 2001;24(3):299–302. DOI: 10.1248/bpb.24.299
24. Morita Y., Matsumura E., Tsujibo H. Biological activity of 4-acetyltropolone, the minor component of Thujopsis dolabrata Sieb. et Zucc. hondai Mak. Biol. Pharm. Bull. 2002;25(8):981–985. DOI: 10.1248/bpb.25.981.
Review
For citations:
Kit O.I., Minkin V.I., Lukbanova E.A., Sayapin Yu.A., Gusakov E.A., Sitkovskaya A.O., Filippova S.Yu., Komarova E.F., Volkova A.V., Khodakova D.V., Mindar M.V., Lazutin Yu.N., Engibaryan M.A., Kolesnikov V.E. Evaluation of the cytotoxic activity and toxicity of a tropolone derivative with a potential antitumor effect. Bulletin of Siberian Medicine. 2022;21(2):60-66. https://doi.org/10.20538/1682-0363-2022-2-60-66