Preview

Bulletin of Siberian Medicine

Advanced search

Evaluation of the functional state of mitochondria isolated from mononuclear leukocytes by flow cytometry in patients with chronic heart failure receiving ubidecarenone

https://doi.org/10.20538/1682-0363-2022-2-90-96

Abstract

Aim. To evaluate the functional state of mitochondria isolated from peripheral blood mononuclear leukocytes using flow cytometry in patients with chronic heart failure receiving ubidecarenone (coenzyme Q).

Materials and methods. The study included 53 patients with chronic heart failure who had experienced myocardial infarction. The patients were divided into two groups: group 1 received optimally chosen standard therapy, while group 2 received optimally chosen standard therapy and ubidecarenone (“Kudevite”). The mitochondrial membrane potential was evaluated by flow cytometry using propidium iodide and 3,3′-dihexyloxacarbocyanine iodide (DiOC6(3)). The levels of coenzyme Q were determined using high-performance liquid chromatography with ultraviolet (UV) detection.

Results. A direct correlation was established between the coenzyme Q levels in the blood plasma and the percentage of DiOC6(3)-positive cells (R = 0.39; р < 0.05) in the patients with chronic heart failure. In group 1, no significant differences in the coenzyme Q levels and the percentage of DiOC6(3)-positive and DiOC6(3)-negative cells before and after the therapy were observed. In group 2, a significant increase in the proportion of DiOC6(3)-positive cells and a significant decrease in the percentage of DiOC6(3)-negative cells were revealed.

Conclusion. The increase in the functional activity of mitochondria in the patients with chronic heart failure receiving ubidecarenone was identified. Flow cytometry can be used to evaluate the functional state of mitochondria and observe the efficiency of the selected therapy.

 

About the Authors

O. A. Lobanova
Almazov National Medical Research Center (ANMRC)
Russian Federation

2, Akkuratova Str., St. Petersburg, 197341



L. B. Gaikovaya
North-Western State Medical University (NWSMU) named after I.I. Mechnikov
Russian Federation

41, Kirochnaya Str., St. Petersburg, 191015



V. A. Dadali
North-Western State Medical University (NWSMU) named after I.I. Mechnikov
Russian Federation

41, Kirochnaya Str., St. Petersburg, 191015



A. I. Ermakov
Almazov National Medical Research Center (ANMRC); North-Western State Medical University (NWSMU) named after I.I. Mechnikov
Russian Federation

2, Akkuratova Str., St. Petersburg, 197341,

41, Kirochnaya Str., St. Petersburg, 191015



G. A. Kukharchik
Almazov National Medical Research Center (ANMRC); North-Western State Medical University (NWSMU) named after I.I. Mechnikov
Russian Federation

2, Akkuratova Str., St. Petersburg, 197341,

41, Kirochnaya Str., St. Petersburg, 191015



References

1. Калюжин В.В., Тепляков А.Т., Вечерский Ю.Ю., Рязанцева Н.В., Хлапов А.П. Патогенез хронической сердечной недостаточности: изменение доминирующей парадигмы. Бюллетень сибирской медицины. 2007;4:71–79.

2. Курбатова О.В., Измайлова Т.Д., Сурков А.Н., Намазова-Баранова Л.С., Полякова С.И., Мирошкина Л.В. и др. Митохондриальная дисфункция у детей с печеночными формами гликогеновой болезни. Вестник РАМН. 2014;69(7–8):78–84. DOI: 10.15690/vramn.v69i7-8.1112.

3. Geromel V., Darin N., Chretien D., Benit P., DeLonlay P., Rötig A. et al. Coenzyme Q and idebenone in the therapy of respiratory chain diseases: rationale and comparative benefis. Mol. Gen. Met. 2002;77(1–2):21–30. DOI: 10.1016/s1096-7192(02)00145-2.

4. Aimo A., Borrelli C., Vergaro G., Piepoli M.F., Caterina A.R., Mirizzi G. et al Targeting mitochondrial dysfunction in chronic heart failure: Current evidence and potential approaches. Curr. Pharm. Des. 2016;22(31):4807–4822. DOI: 10.2174/1381612822666160701075027.

5. Duchen M.R. Mitochondria in health and disease: perspectives on a new mitochondrial biology. Mol. Aspects Med. 2004;25(4):365–451. DOI: 10.1016/j.mam.2004.03.001.

6. Essop M.F., Opie L.H. Metabolic therapy for heart failure. Eur. Heart J. 2004;25(20):1765–1768. DOI: 10.1016/j.ehj.2004.08.019.

7. Фрелих Г.А., Поломеева Н.Ю., Васильев А.С., Удут В.В. Современные методы оценки функционального состояния митохондрий. Сибирский медицинский журнал. 2013;28(3):7–13.

8. Гривенникова В.Г., Виноградов А.Д. Генерация активных форм кислорода митохондриями. Успехи биологической химии. 2013;53:245–296.

9. Pieczenik S.R., Neustadt J. Mitochondrial dysfunction and molecular pathways of disease. Exp. Mol. Pathol. 2007;83(1):84– 92. DOI: 10.1016/j.yexmp.2006.09.008.

10. Sakamuru S., Li Xiao, Attene-Ramos M.S., Huang R., Lu J., Shou L. et al. Application of a homogenous membrane potential assay to assess mitochondrial function. Physiol. Genomics. 2012;44(9):495–503. DOI: 10.1152/physiolgenomics.00161.2011.

11. Sakamuru S., Attene-Ramos M.S., Xia M. Mitochondrial membrane potential assay. Methods Mol. Biol. 2016;1473:17– 22. DOI: 10.1007/978-1-4939-6346-1_2.

12. Glisic-Milosavljevic S., Waukau J., Jana S., Jailwala P., Rovensky J., Ghosh S. Comparison of apoptosis and mortality measurements in peripheral blood mononuclear cells (PBMCs) using multiple methods. Cell Prolif. 2005;38(5):301– 311. DOI: 10.1111/j.1365-2184.2005.00351.x.

13. Wlodkowic D., Telford W., Skommer J., Darzynkiewicz Z. Apoptosis and beyond: cytometry in studies of programmed cell death. Methods Cell Biol. 2011;103:55–98. DOI: 10.1016/B978-0-12-385493-3.00004-8.

14. Cortez E., Neves F.A., Bernardo A.F., Stumbo A.C., Carvalho L., Garcia-Souza E. et al. Lymphocytes mitochondrial physiology as biomarker of energy metabolism during fasted and fed conditions. Scientific World Journal. 2012; 2012:629326. DOI: 10.1100/2012/629326.

15. Palloti F., Lenaz G. Isolation and subfraction of mitochondria from animal cells and tissue culture lines. Methods Cell Biol. 2007;80:3–44. DOI: 10.1016/S0091-679X(06)80001-4.

16. Schiattarella G.G., Magliulo F., Cattaneo F., Gargiulo G., Sannino A., Franzone A. et al. Novel molecular approaches in heart failure: Seven trans-membrane receptors signaling in the heart and circulating blood leukocytes. Front. Cardiovasc. Med. 2015;2:13. DOI: 10.3389/fcvm.2015.00013.

17. Jiang P., Wu M., Zheng Y., Wang C., Li Y., Xin J. et al. Analysis of coenzyme Q(10) in human plasma by column-switching liquid chromatography. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 2004;805(2):297–301. DOI: 10.1016/j.jchromb.2004.03.008.

18. Mosca F., Fattorini D., Bompadre S., Littarru G.P. Assay of coenzyme Q(10) in plasma by a single dilution step. Anal. Biochem. 2002;305(1):49–54. DOI: 10.1006/abio.2002.5653.

19. Bhatti J.S., Bhatti G.K., Reddy P.H. Mitochondrial dysfunction and oxidative stress in metabolic disorders – A Step towards mitochondria based therapeutic strategies. Biochim. Biophys. Acta. 2017;1863(5):1066–1077. DOI: 10.1016/j.bbadis.2016.11.010.

20. Wang Y., Hekimi S. Understanding ubiquinone. Trends Cell Biol. 2016;26(5):367–378. DOI: 10.1016/j.tcb.2015.12.007.


Review

For citations:


Lobanova O.A., Gaikovaya L.B., Dadali V.A., Ermakov A.I., Kukharchik G.A. Evaluation of the functional state of mitochondria isolated from mononuclear leukocytes by flow cytometry in patients with chronic heart failure receiving ubidecarenone. Bulletin of Siberian Medicine. 2022;21(2):90-96. https://doi.org/10.20538/1682-0363-2022-2-90-96

Views: 767


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1682-0363 (Print)
ISSN 1819-3684 (Online)