Insulin-like growth factors and their transporter proteins in the liver of rats with experimental diabetes, adenocarcinoma of the uterine corpus, and their combination
https://doi.org/10.20538/1682-0363-2022-2-129-136
Abstract
Aim. To investigate the content of insulin-like growth factor (IGF)-1, IGF-2, and their transporter proteins IGFBP-1 and IGFBP in the liver of rats with experimental diabetes, Guerin’s carcinoma, and their combination.
Materials and methods. The experiment was carried out on 64 white outbred rats of both sexes, which were divided into 4 groups of 8 animals each: group 1 – intact animals, group 2 – animals with experimental diabetes, group 3 – animals with subcutaneously inoculated Guerin’s carcinoma, group 4 – animals with experimental diabetes and subcutaneously inoculated Guerin’s carcinoma. In the study, biochemical and statistical analyses and enzyme immunoassays were performed.
Results. In the liver of the outbred rats, sex specificity in the content of insulin-like growth factors and IGFBP-1 was established: the levels of IGF-1, IGF-2, and IGFBP-1 in males were lower than in females. It was shown that the development of diabetes mellitus and the growth of Guerin’s carcinoma led to changes in the sex-specific components in the rat liver.
Conclusion. The growth of Guerin’s carcinoma and the progression of diabetes mellitus cause multidirectional changes in IGF and IGFBP levels in the liver of females and unidirectional changes in the liver of males. Following the growth of Guerin’s carcinoma against the background of diabetes mellitus, sex-specific differences in the content of the studied parameters were minimized. It was shown that diabetes mellitus changed the metabolic profile of the liver in the animals of both sexes.
About the Authors
E. M. FrantsiyantsRussian Federation
63, 14th Liniya Str., Rostov-on-Don, 344037
V. A. Bandovkina
Russian Federation
63, 14th Liniya Str., Rostov-on-Don, 344037
I. V. Kaplieva
Russian Federation
63, 14th Liniya Str., Rostov-on-Don, 344037
E. A. Sheiko
Russian Federation
63, 14th Liniya Str., Rostov-on-Don, 344037
E. I. Surikova
Russian Federation
63, 14th Liniya Str., Rostov-on-Don, 344037
I. V. Neskubina
Russian Federation
63, 14th Liniya Str., Rostov-on-Don, 344037
I. K. Trepitaki
Russian Federation
63, 14th Liniya Str., Rostov-on-Don, 344037
Yu. A. Pogorelova
Russian Federation
63, 14th Liniya Str., Rostov-on-Don, 344037
N. D. Cheryarina
Russian Federation
63, 14th Liniya Str., Rostov-on-Don, 344037
L. A. Nemashkalova
Russian Federation
63, 14th Liniya Str., Rostov-on-Don, 344037
I. M. Kotieva
Russian Federation
63, 14th Liniya Str., Rostov-on-Don, 344037
A. V. Shaposhnikov
Russian Federation
63, 14th Liniya Str., Rostov-on-Don, 344037
M. I. Morozova
Russian Federation
63, 14th Liniya Str., Rostov-on-Don, 344037
References
1. Wang M., Yang Y., Liao Z. Diabetes and cancer: Epidemiological and biological links. World Journal of Diabetes. 2020;11(6):227–238. DOI: 10.4239/wjd.v11.i6.227.
2. Arneth B., Arneth R., Shams M. Metabolomics of type 1 and type 2 diabetes. Int. J. Mol. Sci. 2019;20(10):2467. DOI: 10.3390/ijms20102467.
3. Yaribeygi H., Bo S., Ruscica M., Sahebkar A. Ceramides and diabetes mellitus: an update on the potential molecular relationships. Diabet. Med. 2020;37(1):11–19. DOI: 10.1111/dme.13943.
4. Saltzman B.S., Doherty J.A., Hill D.A., Beresford S.A., Voigt L.F., Chen C. et al. Diabetes and endometrial cancer: an evaluation of the modifying effects of other known risk factors. Am. J. Epidemiol. 2008;167(5):607–614. DOI: 10.1093/aje/kwm333.
5. Liao C., Zhang D., Mungo C., Tompkins D.A., Zeidan A.M. Is diabetes mellitus associated with increased incidence and disease-specific mortality in endometrial cancer? A systematic review and meta-analysis of cohort studies. Gynecol. Oncol. 2014;135(1):163–171. DOI: 10.1016/j.ygyno.2014.07.095.
6. Godsland I.F. Insulin resistance and hyperinsulinaemia in the development and progression of cancer. Clin. Sci. (Lond.).2009;118(5):315–332. DOI: 10.1042/CS20090399.
7. Liao Z., Tan Z.W., Zhu P., Tan N.S. Cancer-associated fibroblasts in tumor microenvironment - Accomplices in tumor malignancy. Cell Immunol. 2019;343:103729. DOI: 10.1016/j.cellimm.2017.12.003.
8. Watts E.L., Perez-Cornago A., Appleby P.N., Albanes D., Ardanaz E., Black A. et al. The associations of anthropometric, behavioural and sociodemographic factors with circulating concentrations of IGF-I, IGF-II, IGFBP-1, IGFBP-2 and IGFBP-3 in a pooled analysis of 16,024 men from 22 studies. Int. J. Cancer. 2019;145(12):3244–3256. DOI: 10.1002/ijc.32276.
9. Collins K.K. The diabetes-cancer link. Diabetes Spectr. 2014;27(4):276–280. DOI: 10.2337/diaspect.27.4.276.
10. Ferguson R.D., Gallagher E.J., Cohen D., Tobin-Hess A., Alikhani N., Novosyadlyy R. et al. Hyperinsulinemia promotes metastasis to the lung in a mouse model of Her2-mediated breast cancer. Endocr. Relat. Cancer. 2013;20(3):391– 401. DOI: 10.1530/ERC-12-0333.
11. Mansor R., Holly J., Barker R., Biernacka K., Zielinska H., Koupparis A. et al. IGF-1 and hyperglycaemia-induced FOXA1 and IGFBP-2 affect epithelial to mesenchymal transition in prostate epithelial cells. Oncotarget. 2020;11(26):2543–2559. DOI: 10.18632/oncotarget.27650.
12. Muka T., Nano J., Jaspers L., Meun C., Bramer W.M., Hofman A. et al. Associations of steroid sex hormones and sex hormone-binding globulin with the risk of type 2 diabetes in women: A population-based cohort study and meta-analysis. Diabetes. 2017;66(33):577–586. DOI: 10.2337/db16-0473.
13. Ding E.L., Song Y., Malik V.S., Liu S. Sex differences of endogenous sex hormones and risk of type 2 diabetes: a systematic review and meta-analysis. JAMA. 2006;295(1):1288– 1299. DOI: 10.1001/jama.295.11.1288.
14. Liu S., Sun Q. Sex differences, endogenous sex-hormone hormones, sex-hormone binding globulin, and exogenous disruptors in diabetes and related metabolic outcomes. J. Diabetes. 2018;10(6):428–441. DOI: 10.1111/1753-0407.12517.
15. Gambineri A., Pelusi C. Sex hormones, obesity and type 2 diabetes: is there a link? Endocr. Connect. 2019;8(1):R1–R9. DOI: 10.1530/EC-18-0450.
16. Felix A.S., Yang H.P., Bell D.W., Sherman M.E. Epidemiology of endometrial carcinoma: etiologic importance of hormonal and metabolic influences. Adv. Exp. Med. Biol. 2017;943:3– 46. DOI: 10.1007/978-3-319-43139-0_1.
17. Takahashi Y. The role of growth hormone and insulin-like growth factor-I in the liver. Int. J. Mol. Sci.2017;18(7):E1447. DOI: 10.3390/ijms18071447.
18. Bach L.A., Headey S.J., Norton R.S. IGF-binding proteins – the pieces are falling into place. Trends Endocrinol. Metab. 2005;16(5):228–234. DOI: 10.1016/j.tem.2005.05.005.
19. Fahlbusch P., Knebel B., Hörbelt T., Barbosa D.M., Nikolic A., Jacob S. et al. Physiological disturbance in fatty liver energy metabolism converges on IGFBP2 abundance and regulation in mice and men. Int. J. Mol. Sci. 2020;21(11):4144. DOI: 10.3390/IJMS21114144.
20. Кит О.И., Франциянц Е.М., Димитриади С.Н., Шевченко А.Н., Каплиева И.В., Трепитаки Л.К. Экспрессия маркеров неоангиогенеза и фибринолитической системы в динамике экспериментальной ишемии почки у крыс. Экспериментальная и клиническая урология. 2015;(1):20–23
Review
For citations:
Frantsiyants E.M., Bandovkina V.A., Kaplieva I.V., Sheiko E.A., Surikova E.I., Neskubina I.V., Trepitaki I.K., Pogorelova Yu.A., Cheryarina N.D., Nemashkalova L.A., Kotieva I.M., Shaposhnikov A.V., Morozova M.I. Insulin-like growth factors and their transporter proteins in the liver of rats with experimental diabetes, adenocarcinoma of the uterine corpus, and their combination. Bulletin of Siberian Medicine. 2022;21(2):129-136. https://doi.org/10.20538/1682-0363-2022-2-129-136