Complexation of fluoroquinolones with magnesium ions
https://doi.org/10.20538/1682-0363-2022-3-6-12
Abstract
Aim. To evaluate strength of magnesium ion complexes with levofloxacin and moxifloxacin.
Materials and methods. Complexation of levofloxacin, moxifloxacin, and reference ligands (ethylenediaminetetraacetate (EDTA), sodium citrate, and glycine) with magnesium ions in the range from 0.0 to 1.0 mmol / l was studied. The technique developed by the authors (patent RU 2680519 C1) was used to measure the rate of a model formation reaction of a magnesium phosphate coarse dispersion. Complexing activity of ligands was expressed in relation to EDTA activity and compared with the theoretical ion exchange equilibrium constants. The half maximal effective concentration (C50) calculated by the Michaelis − Menten equation was used to evaluate the dependence of the complexing activity on the dose.
Results. A correlation between the activity of EDTA, citrate ions, and glycine and the theoretical equilibrium constants (R = −0.87, p < 0.001) was found. In the range from 0.0 to 0.4 mmol / l, both levofloxacin and moxifloxacin showed a lesser complexing effect than EDTA (p < 0.001), and in the range from 0.6 to 1.0 mmol / l, their complexing effect was comparable (p > 0.050). The activity of fluoroquinolones did not differ at any concentration (p > 0.050), but moxifloxacin C50 (0.13 mmol / l; 95% confidence interval (CI) 0.11–0.15) was significantly lower than that of levofloxacin (0.22 mmol / l; 95% CI 0.19–0.26), (p < 0.001). Within the 0.4–1.0 mmol / l concentration range, the activity of levofloxacin was higher than that of citrate ions and glycine (p < 0.001). Complexing activity of moxifloxacin was higher than that of citrate ions within the range of 0.2–1.0 mmol / l, and in the range of 0.4–1.0 mmol / l, it was higher than that of glycine (p < 0.001).
Conclusion. The proposed method showed that the complexing activity of fluoroquinolones was close to that of EDTA and exceeded the activity of citrate ions and glycine. The complexation of fluoroquinolones may be associated with their ability to induce side effects associated with magnesium deficiency.
About the Authors
V. M. BakhtinRussian Federation
3, Repina Str., Ekaterinburg, 620028
Competing Interests:
The authors declare the absence of obvious or potential conflicts of interest related to the publication of this article
N. V. Izmozherova
Russian Federation
3, Repina Str., Ekaterinburg, 620028
Competing Interests:
The authors declare the absence of obvious or potential conflicts of interest related to the publication of this article
N. A. Belokonova
Russian Federation
3, Repina Str., Ekaterinburg, 620028
Competing Interests:
The authors declare the absence of obvious or potential conflicts of interest related to the publication of this article
References
1. Bidell M.R., Lodise T.P. Fluoroquinolone-associated tendinopathy: does levofloxacin pose the greatest risk? Pharmacotherapy. 2016;36(6):679–693. DOI: 10.1002/phar.1761.
2. Stahlmann R., Lode H.M. Risks associated with the therapeutic use of fluoroquinolones. Expert Opin. Drug Saf. 2013;12(4):497–505. DOI: 10.1517/14740338.2013.796362.
3. Lee C.C., Lee M.G., Hsieh R., Porta L., Lee W.-C., Lee S.-H., Chang S.-S. Oral fluoroquinolone and the risk of aortic dissection. J. Am. Coll. Cardiol. 2018;72(12):1369–1378. DOI: 10.1016/j.jacc.2018.06.067.
4. Gorelik E., Masarwa R., Perlman A., Rotshild V., Abbasi M., Muzskat M. et al. Fluoroquinolones and Cardiovascular Risk: A Systematic Review, Meta-analysis and Network Meta-analysis. Drug Saf. 2019;42(4):529–538. DOI: 10.1007/s40264-018-0751-2.
5. Michalak K., Sobolewska-Włodarczyk A., Włodarczyk M., Sobolewska J., Woźniak P., Sobolewski B. Treatment of the fluoroquinolone-associated disability: the pathobiochemical implications. Oxid. Med. Cell Longev. 2017;2017:8023935. DOI:10.1155/2017/8023935.
6. Uivarosi V. Metal complexes of quinolone antibiotics and their applications: an update. Molecules. 2013;18(9):11153–11197. DOI: 10.3390/molecules180911153.
7. Serafin A., Stańczak A. The complexes of metal ions with fluoroquinolones. Russ. J. Coord. Chem. 2009;35(2):81–95. DOI: 10.1134/S1070328409020018.
8. Förster C., Kociok K., Shakibaei M., Merker H.J., Vormann J., Günther T. et al. Integrins on joint cartilage chondrocytes and alterations by ofloxacin or magnesium deficiency in immature rats. Arch. Toxicol. 1996;70(5):261–270. DOI: 10.1007/s002040050272.
9. Громова О.А., Торшин И.Ю., Лиманова О.А., Федотова Л.Э.,. Калачева А.Г., Тришина Т.Р. Антибиотикотерапия провоцирует дефицит магния. Что делать? Фарматека. 2016;327(14):6–13.
10. Громова О.А., Торшин И.Ю., Моисеев В.С., Сорокина М.А. О фармакологических взаимодействия магния с антибиотиками и дефиците магния, возникающем в результате антибиотикотерапии. Терапия. 2017;11(1): 135–143.
11. Белоконова Н.А., Изможерова Н.В., Бахтин В.М. Способ оценки комплексообразующих свойств лекарственных веществ по отношению к соединениям магния. Патент Российской Федерации RU 2680519 C1. 22.02.2019. Правообладатель: Федеральное государственное бюджетное образовательное учреждение высшего образования «Уральский государственный медицинский университет» Министерства здравоохранения Российской Федерации.
12. Громова О.А., Калачева А.Г., Торшин И.Ю., Грустливая У.Е., Прозорова Н.В., Егорова Е.Ю. и др. О диагностике дефицита магния. Часть 1. Архивъ внутренней медицины. 2014;(2):5–10. DOI: 10.20514/2226-6704-2014-0-2-5-10.
13. Chien S.C., Rogge M.C., Gisclon L.G., Curtin C., Wong F., Natarajan J. et al. Pharmacokinetic profile of levofloxacin following once-daily 500-milligram oral or intravenous doses. Antimicrob. Agents Chemother. 1997;41(10):2256–2260. DOI: 10.1128/AAC.41.10.2256.
14. Stass H., Kubitza D., Schühly U. Pharmacokinetics, safety and tolerability of moxifloxacin, a novel 8-methoxyfluoroquinolone, after repeated oral administration. Clin. Pharmacokinet. 2001;40(Suppl.1):1–9. DOI: 10.2165/00003088-200140001-00001.
15. Sartini I., Łebkowska-Wieruszewska B., Sitovs A., Lisowski A., Poapolathep A., Giorgi M. Levofloxacin pharmacokinetics and tissue residue concentrations after oral administration in Bilgorajska geese. Br. Poult. Sci. 2021;62(2):193–198. DOI: 10.1080/00071668.2020.1842855.
16. Никольский Б.П. Справочник химика. Т. 3. Химическое равновесие и кинетика. Свойства растворов. Электродные процессы. М.; Л.: Химия, 1965:1008.
17. Michaelis L., Menten M.L., Johnson K.A., Goody R.S. The original Michaelis constant: translation of the 1913 Michaelis – Menten paper. Biochemistry. 2011;50(39):8264–8269. DOI: 10.1021/bi201284u.
18. Drevenšek P., Košmrlj J., Giester G., Skauge T., Sletten E., Sepcić K. et al. X-ray crystallographic, NMR and antimicrobial activity studies of magnesium complexes of fluoroquinolones – racemic ofloxacin and its S-form, levofloxacin. J. Inorg. Biochem. 2006;100(11):1755–1763. DOI: 10.1016/j.jinorgbio.2006.06.011.
19. Haruki T., Miyazaki D., Matsuura K., Terasaka Y., Noguchi Y., Inoue Y., Yamagami S. Comparison of toxicities of moxifloxacin, cefuroxime, and levofloxacin to corneal endothelial cells in vitro. J. Cataract Refract Surg. 2014;40(11):1872–1878. DOI: 10.1016/j.jcrs.2014.08.027.
20. Fukuda M., Sasaki H. Effects of fluoroquinolone-based antibacterial ophthalmic solutions on corneal wound healing. J. Ocul. Pharmacol. Ther. 2015;31(9):536–540. DOI: 10.1089/jop.2014.0118.
21. Förster C., Rücker M., Shakibaei M., Baumann-Wilschke I., Vormann J., Stahlmann R. Effects of fluoroquinolones and magnesium deficiency in murine limb bud cultures. Arch. Toxicol. 1998;72(7):411–419. DOI: 10.1007/s002040050521.
22. Shakibaei M., Baumann-Wilschke I., Rücker M., Stahlmann R. Ultrastructural characterization of murine limb buds after in vitro exposure to grepafloxacin and other fluoroquinolones. Arch. Toxicol. 2002;75(11–12):725–733. DOI: 10.1007/s00204-001-0293-7.
23. Lecomte S., Baron M.H., Chenon M.T., Coupry C., Moreau N.J. Effect of magnesium complexation by fluoroquinolones on their antibacterial properties. Antimicrob Agents Chemother. 1994;38(12):2810–2816. DOI: 10.1128/AAC.38.12.2810.
24. Tristani-Firouzi M., Chen J., Mitcheson J.S., Sanguinetti M.C. Molecular biology of K(+) channels and their role in cardiac arrhythmias. Am. J. Med. 2001;110(1):50–59. DOI: 10.1016/s0002-9343(00)00623-9.
25. Lin M.C., Papazian D.M. Differences between ion binding to eag and HERG voltage sensors contribute to differential regulation of activation and deactivation gating. Channels (Austin). 2007;1(6):429–437. DOI: 10.4161/chan.1.6.5760.
Review
For citations:
Bakhtin V.M., Izmozherova N.V., Belokonova N.A. Complexation of fluoroquinolones with magnesium ions. Bulletin of Siberian Medicine. 2022;21(3):6-12. https://doi.org/10.20538/1682-0363-2022-3-6-12