Preview

Bulletin of Siberian Medicine

Advanced search

Morphological changes in the heart and aorta of rats with diet-induced metabolic syndrome

https://doi.org/10.20538/1682-0363-2022-3-13-21

Abstract

Aim. To identify early morphological changes in the heart and aorta of rats with experimental metabolic syndrome induced by a high-fat and high-carbohydrate diet (HFHCD).

Materials and methods. The study was carried out on male Wistar rats. The animals were divided into two groups: a control group (n = 10) and an experimental group (n = 10). The rats from the control group were fed with a standard laboratory diet. The rats from the experimental group received HFHCD for 12 weeks. Body weight, blood pressure (BP), and individual parameters of carbohydrate and lipid metabolism were assessed in the rats.   A histologic examination of the heart and aorta in the animals was performed.

Results. Feeding rats with HFHCD led to an increase in body weight, elevation of BP, obesity, hyperglycemia, and triglyceridemia. The histologic examination of the heart in the rats of the experimental group showed signs of vascular disease, lipomatosis, and focal myocardial degeneration. Lipid accumulation in the cells of the media, hyperplasia of adipocytes in the adventitia, and depletion and fragmentation of the elastic lamina were revealed in the aortic wall of the rats receiving HFHCD.

Conclusion. The study indicated that HFHCD is an effective way to model metabolic syndrome. Structural disorders in the heart and aorta may be the mainstay for the development of cardiomyopathy and arterial hypertension in diet-induced metabolic syndrome.

About the Authors

J. G. Birulina
Siberian State Medical University
Russian Federation

2, Moscow Trakt, Tomsk, 634050


Competing Interests:

The authors declare the absence of obvious or potential conflicts of interest related to the publication of this article



V. V. Ivanov
Siberian State Medical University
Russian Federation

2, Moscow Trakt, Tomsk, 634050


Competing Interests:

The authors declare the absence of obvious or potential conflicts of interest related to the publication of this article



E. E. Buyko
Siberian State Medical University
Russian Federation

2, Moscow Trakt, Tomsk, 634050


Competing Interests:

The authors declare the absence of obvious or potential conflicts of interest related to the publication of this article



V. V. Bykov
Siberian State Medical University
Russian Federation

2, Moscow Trakt, Tomsk, 634050


Competing Interests:

The authors declare the absence of obvious or potential conflicts of interest related to the publication of this article



A. N. Dzyuman
Siberian State Medical University
Russian Federation

2, Moscow Trakt, Tomsk, 634050


Competing Interests:

The authors declare the absence of obvious or potential conflicts of interest related to the publication of this article



А. V. Nosarev
Siberian State Medical University
Russian Federation

2, Moscow Trakt, Tomsk, 634050


Competing Interests:

The authors declare the absence of obvious or potential conflicts of interest related to the publication of this article



A. V. Grigoreva
Siberian State Medical University
Russian Federation

2, Moscow Trakt, Tomsk, 634050


Competing Interests:

The authors declare the absence of obvious or potential conflicts of interest related to the publication of this article



S. V. Gusakova
Siberian State Medical University
Russian Federation

2, Moscow Trakt, Tomsk, 634050


Competing Interests:

The authors declare the absence of obvious or potential conflicts of interest related to the publication of this article



References

1. Michos E.D., Khan S.S. Further understanding of ideal cardiovascular health score metrics and cardiovascular disease. Expert. Rev. Cardiovasc. Ther. 2021;19(7):607–617. DOI: 10.1080/14779072.2021.1937127.

2. Rider O.J., Lewis A.J., Neubauer S. Structural and metabolic effects of obesity on the myocardium and the aorta. Obesity Facts. 2014;7(5):329–338. DOI: 10.1159/000368429.

3. Rodríguez-Correa E., González-Pérez I., Clavel-Pérez P.I., Contreras-Vargas Y., Carvajal K. Biochemical and nutritional overview of diet-induced metabolic syndrome models in rats: what is the best choice? Nutr. Diabetes. 2020;10(1):24. DOI: 10.1038/s41387-020-0127-4.

4. Poudyal H., Panchal S.K., Ward L.C., Waanders J., Brown L. Chronic high-carbohydrate, high-fat feeding in rats induces reversible metabolic, cardiovascular, and liver changes. Am. J. Physiol. Endocrinol. Metab. 2012;302(12):E1472–E1482. DOI: 10.1152/ajpendo.00102.2012.

5. Aydin S., Aksoy A., Aydin S., Kalayci M, Yilmaz M., Kuloglu T. et al. Today’s and yesterday’s of pathophysiology: Biochemistry of metabolic syndrome and animal models. Nutrition. 2014;30(1):1–9. DOI: 10.1016/j.nut.2013.05.013.

6. Saklayen M.G. The global epidemic of the metabolic syndrome. Curr. Hypertens. Rep. 2018;20(2):12. DOI: 10.1007/ s11906-018-0812-z.

7. Чумакова Г.А., Веселовская Н.Г., Козаренко А.А., Воробьева Ю.В. Особенности морфологии, структуры и функции сердца при ожирении. Российский кардиологический журнал. 2012;(4):93–99. DOI: 10.15829/1560-4071-2012-493-99.

8. Jiménez-González S., Marín-Royo G., Jurado-López R., Bartolomé M.V., Romero-Miranda A., Luaces M. et al. The crosstalk between cardiac lipotoxicity and mitochondrial oxidative stress in the cardiac alterations in diet-induced obesity in rats. Cells. 2020;9(2):451. DOI: 10.3390/cells9020451.

9. Saraf R., Huang T., Mahmood F., Owais K., Bardia A., Khabbaz K.R. et al. Early cellular changes in the ascending aorta and myocardium in a swine model of metabolic syndrome. PLoS One. 2016;11(1):e0146481. DOI: 10.1371/journal.pone.0146481.

10. Leopoldo A.S., Sugizaki M.M., Lima-Leopoldo A.P., do Nascimento A.F., Luvizotto R., de Campos D.H. et al. Cardiac remodeling in a rat model of diet-induced obesity. Can. J. Cardiol. 2010;26(8):423–429. DOI: 10.1016/s0828282x(10)70440-2.

11. Leonardi B.F., Gosmann G., Zimmer A.R. Modeling diet-induced metabolic syndrome in rodents. Mol. Nutr. Food Res. 2020;64(22):2000249. DOI: 10.1002/mnfr.202000249.

12. Panchal S.K., Brown L. Rodent Models for Metabolic Syndrome Research. J. Biomed. Biotechnol. 2011;2011:351982. DOI: 10.1155/2011/351982.

13. Wong S.K., Chin K.Y., Suhaimi F.H., Ahmad F., Ima-Nirwana S. The effects of a modified high-carbohydrate high-fat diet on metabolic syndrome parameters in male rats. Exp. Clin. Endocrinol. Diabetes. 2018;126(4):205–212. DOI: 10.1055/s0043-119352.

14. Okatan E.N., Kizil S., Gokturk H., Can B., Turan B. High-carbohydrate diet-induced myocardial remodelling in rats. Curr. Res. Cardiol. 2015;2(1):5–10. DOI: 10.4172/23680512.1000020.

15. Artinano A.A., Castro M.M. Experimental rat models to study the metabolic syndrome. Br. J. Nutr. 2009;102(9):1246–1253. DOI: 10.1017/S0007114509990729.

16. Tran V., De Silva T.M., Sobey C.G., Lim K., Drummond G.R., Vinh A. et al. The vascular consequences of metabolic syndrome: rodent models, endothelial dysfunction, and current therapies. Front. Pharmacol. 2020;11:148. DOI: 10.3389/fphar.2020.00148.

17. Ruan X.-H., Ma T., Fan Y. Ablation of TMEM126B protects against heart injury via improving mitochondrial function in high fat diet (HFD)-induced mice. Biochem. Bio phys. Res. Commun. 2019;515(4):636–643. DOI: 10.1016/j.bbrc.2019.05.084.

18. Sahraoui A., Dewachter C., Vegh G., Mc Entee K., Naeije R., Bouguerra S.A. et al. High fat diet altered cardiac metabolic gene profile in Psammomys obesus gerbils. Lipids Health Dis. 2020;19(1):123. DOI: 10.1186/s12944-020-01301-y.

19. Feriani A., Bizzarri M., Tir M., Aldawood N., Alobaid H., Allagui M.S. et al. High-fat diet-induced aggravation of cardiovascular impairment in permethrin-treated Wistar rats. Ecotoxicol. Environ. Saf. 2021;222:112461. DOI: 10.1016/j.ecoenv.2021.112461.

20. Lepczyński A., Ożgo M., Michałek K., Dratwa-Chałupnik A., Grabowska M., Herosimczyk A. et al. Effects of three-month feeding high fat diets with different fatty acid composition on myocardial proteome in mice. Nutrients. 2021;13(2):330. DOI: 10.3390/nu13020330.

21. Logvinov S.V., Naryzhnaya N.V., Kurbatov B.K., Gorbunov A.S., Birulina Y.G., Maslov L.L. et al. High carbohydrate high fat diet causes arterial hypertension and histological changes in the aortic wall in aged rats: The involvement of connective tissue growth factors and fibronectin. Exp. Gerontol. 2021;154:111543. DOI: 10.1016/j.exger.2021.111543.

22. Таримов К.О., Субботкин М.В., Куланова А.А., Петренко В.И., Кубышкин А.В., Фомочкина И.И. и др. Сравнительный анализ коррекции морфофункциональных нарушений в сердечно-сосудистой системе при моделированном метаболическом синдроме. Ожирение и метаболизм. 2020;17(2):208–219. DOI: 10.14341/omet12296.

23. Martinez-Quinones P., McCarthy C.G., Watts S.W., Klee N.S., Komic A., Calmasini F.B. et al. Hypertension induced morphological and physiological changes in cells of the arteri al wall. Am. J. Hypertens. 2018;31(10):1067–1078. DOI: 10.1093/ajh/hpy083.

24. Wang X., Ye P., Cao R., Yang X., Xiao W., Zhang Y. et al. Triglycerides are a predictive factor for arterial stiffness: a community-based 4.8-year prospective study. Lipids Health Dis. 2016;15:97. DOI: 10.1186/s12944-016-0266-8.


Review

For citations:


Birulina J.G., Ivanov V.V., Buyko E.E., Bykov V.V., Dzyuman A.N., Nosarev А.V., Grigoreva A.V., Gusakova S.V. Morphological changes in the heart and aorta of rats with diet-induced metabolic syndrome. Bulletin of Siberian Medicine. 2022;21(3):13-21. https://doi.org/10.20538/1682-0363-2022-3-13-21

Views: 739


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1682-0363 (Print)
ISSN 1819-3684 (Online)