Preview

Bulletin of Siberian Medicine

Advanced search

Variants of creating heterotopic and orthotopic PDX models of human colorectal cancer

https://doi.org/10.20538/1682-0363-2022-3-50-58

Abstract

Aim. To create heterotopic and orthotopic patient-derived xenograft (PDX) models of colorectal cancer (CRC) by transplantation of patient’s tumor samples into immunodeficient BALB / c Nude mice.

Materials and methods. The study was performed on 15 female BALB / c Nude mice aged 6–8 weeks weighing 21–25 g. All animals underwent transplantation of the tumor material obtained from CRC patients into the following sites: heterotopic transplantation (under the skin of the thigh and into the omentum), orthotopic transplantation (into the descending and ascending colon and into the cecum). Weight and general condition of the animals and the size of the tumor nodule had been monitored for 80 days. The success of each model was assessed by the degree of engraftment, the dynamics of tumor growth, and the reproducibility of histopathologic characteristics. At the end of the experiment, the animals were euthanized by cervical dislocation.

Results. 100% survival of the animals and similar tumor growth dynamics in the xenograft models were observed throughout the experiment. The analysis of histologic specimens obtained from the xenografts and patient’s tumor showed their correspondence to moderately differentiated intestinal adenocarcinoma. The main advantages and disadvantages of different variants of PDX models were described.

Conclusion. Heterotopic and orthotopic PDX models reproduce the morpho-histologic characteristics of human tumors and demonstrate stable growth dynamics. Therefore, they are a suitable tool for the development, testing, and validation of potential anticancer drugs.

About the Authors

A. A. Kiblitskaya
National Medical Research Center of Oncology
Russian Federation

6, 14 Liniya Str., Rostov-on-Don, 344037


Competing Interests:

The authors declare the absence of obvious or potential conflicts of interest related to the publication of this article



A. Y. Maksimov
National Medical Research Center of Oncology
Russian Federation

6, 14 Liniya Str., Rostov-on-Don, 344037


Competing Interests:

The authors declare the absence of obvious or potential conflicts of interest related to the publication of this article



A. S. Goncharova
National Medical Research Center of Oncology
Russian Federation

6, 14 Liniya Str., Rostov-on-Don, 344037


Competing Interests:

The authors declare the absence of obvious or potential conflicts of interest related to the publication of this article



Ye. M. Nepomnyashchaya
National Medical Research Center of Oncology
Russian Federation

6, 14 Liniya Str., Rostov-on-Don, 344037


Competing Interests:

The authors declare the absence of obvious or potential conflicts of interest related to the publication of this article



Ye. Y. Zlatnik
National Medical Research Center of Oncology
Russian Federation

6, 14 Liniya Str., Rostov-on-Don, 344037


Competing Interests:

The authors declare the absence of obvious or potential conflicts of interest related to the publication of this article



G. Y. Yegorov
National Medical Research Center of Oncology
Russian Federation

6, 14 Liniya Str., Rostov-on-Don, 344037


Competing Interests:

The authors declare the absence of obvious or potential conflicts of interest related to the publication of this article



Ye. A. Lukbanova
National Medical Research Center of Oncology
Russian Federation

6, 14 Liniya Str., Rostov-on-Don, 344037


Competing Interests:

The authors declare the absence of obvious or potential conflicts of interest related to the publication of this article



Ye. V. Zaikina
National Medical Research Center of Oncology
Russian Federation

6, 14 Liniya Str., Rostov-on-Don, 344037


Competing Interests:

The authors declare the absence of obvious or potential conflicts of interest related to the publication of this article



A. V. Volkova
National Medical Research Center of Oncology
Russian Federation

6, 14 Liniya Str., Rostov-on-Don, 344037


Competing Interests:

The authors declare the absence of obvious or potential conflicts of interest related to the publication of this article



References

1. Федоров В.Э., Поделякин К.А. Эпидемиологические аспекты колоректального рака (обзор). Медицинский альманах. 2017;4(49):145–148.

2. Bray F., Ferlay J., Soerjomataram I., Siegel R.L., Torre L.A., Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2018;68(6):394–424. DOI: 10.3322/caac.21492.

3. Stastna M., Janeckova L., Hrckulak D., Kriz V., Korinek V. Human colorectal cancer from the perspective of mouse models. Genes. 2019;10(788):33. DOI: 10.3390/genes10100788.

4. Геворкян Ю.А., Колесников В.Е., Солдаткина Н.В., Харагезов Д.А., Дашков А.В., Каймакчи Д.О. и др. Малоинвазивные хирургические вмешательства в лечении больных метастатическим колоректальным раком. Южно-Российский онкологический журнал. 2020;1(2):22–27. DOI: 10.37748/2687-0533-2020-1-2-3.

5. Кит О.И., Геворкян Ю.А., Солдаткина Н.В., Колесни ков В.Е., Харагезов Д.А. Лапароскопические комбинированные оперативные вмешательства при метастатическом колоректальном раке. Колопроктология. 2015;4(54):19–23.

6. Имятинов Е.Н. Клинико-молекулярные аспекты колоректального рака: этиопатогенез, профилактика, индивидуализация лечения. Практическая онкология. 2005;6(22):65–70.

7. Baran B., Ozupek N.M., Tetikа N.Y.., Acarb E., Bekcioglua O., Baskina Y. Difference between left-sided and right-sided colorectal cancer: a focused review of literature. Gastroenterology Res. 2018;11(4):264–273. DOI: 10.14740/gr1062w.

8. Luisetto M., Ahmadabadi B.N., Nili-Ahmadabadi H., Rafa A.Y., Hamid G.A., Mashori G.R. et al. Comparison of risk factors and molecular analysis of right-sided colon and left sided colon cancer. Adv. Can. Res. & Clinical Imag. 2019;2(2):27. DOI: 10.33552/ACRCI.2019.02.000533.

9. Kwak H.D., Ju J.K. Immunological differences between right-sided and leftsided colorectal cancers: a comparison of embryologic midgut and hindgut. Ann. Coloproctol. 2019;35(6):342–346. DOI: 10.3393/ac.2019.03.17.1.

10. Wilding J.L., Bodmer W.F. Cancer cell lines for drug discovery and development. Cancer Res. 2014;74(9):2377–2384. DOI: 10.1158/0008-5472.CAN-13-2971.

11. Srivastava P., Kumar M., Nayak P.K. Role of patient derived cell lines and xenograft in cancer research. The Pharmstudent. 2016;27:40–48.

12. Cho S.-Y. Patient-derived xenografts as compatible models for precision oncology. Laboratory Animal Research. 2020;36:14. DOI: 10.1186/s42826-020-00045-1.

13. Williams S.A., Anderson W.C., Santaguida M.T., Dylla S.J. Patient-derived xenografts, the cancer stem cell paradigm, and cancer pathobiology in the 21st century. Laboratory Investigation. 2013;93(9):970–982. DOI: 10.1038/labinvest.2013.92.

14. Hidalgo M., Amant F., Biankin A.V., Budinská E., Byrne A.T., Caldas C. et al. Patient-derived xenograft models: an emerging platform for translational cancer research. Cancer Discov. 2014;4(9):998–1013. DOI: 10.1158/2159-8290.

15. DeRose Yo.S., Wang G., Lin Y.-C., Bernard P.S., Buys S.S., Ebbert M.T.W. et al. Tumor grafts derived from women with breast cancer authentically reflect tumor pathology, growth, metastasis and disease outcomes. Nature Medicine. 2011;17(11):1514–1520. DOI: 10.1038/nm.2454.

16. Inoue A., Deem A.K., Kopetz S., Heffernan T.P., Draetta G.F., Carugo A. Current and Future Horizons of Patient-Derived Xenograft Models in Colorectal Cancer Translational Research. Cancers. 2019;11(9):1321. DOI: 10.3390/cancers11091321.

17. Linnebacher M., Maletzki C., Ostwald C., Klier U., Krohn M., Klar E., Prall F. Cryopreservation of human colorectal carcinomas prior to xenografting. BMC Cancer. 2010;10:362. DOI: 10.1186/1471-2407-10-362.

18. Marangoni E., Vincent-Salomon A., Auger N., Degeorges A., Assayag F., de Cremoux P. et al. A new model of patient tumor-derived breast cancer xenografts for preclinical assays. Clinical Cancer Research. 2007;13(13):3989–3998. DOI: 10.1158/1078-0432.CCR-07-0078.

19. Sivanand S., Peña-Llopis S., Zhao H., Kucejova B., Spence P., Pavia-Jimenez A. et al. A validated tumorgraft model reveals activity of dovitinib against renal cell carcinoma. Science Translational Medicine. 2012;4(137):137ra75. DOI: 10.1126/ scitranslmed.3003643.

20. Zhu Y., Tian T., Li Z., Tang Z., Wang L., Wu J. at al. Establishment and characterization of patient-derived tumor xenograft using gastroscopic biopsies in gastric cancer. Scientific Reports. 2015;5:8542. DOI: 10.1038/srep08542.

21. Xu Y., Zhang F., Pan X., Wang G., Zhu L., Zhang J. et al. Xenograft tumors derived from malignant pleural efusion of the patients with non-small-cell lung cancer as models to explore drug resistance. Cancer Commun. 2018;38(1):19. DOI: 10.1186/s40880-018-0284-1.

22. Jung J., Sook H., Chang S.S. The generation and application of patient-derived xenograft model for cancer research. Cancer Res. Treat. 2018;50(1):1–10. DOI: 10.4143/crt.2017.307.


Review

For citations:


Kiblitskaya A.A., Maksimov A.Y., Goncharova A.S., Nepomnyashchaya Ye.M., Zlatnik Ye.Y., Yegorov G.Y., Lukbanova Ye.A., Zaikina Ye.V., Volkova A.V. Variants of creating heterotopic and orthotopic PDX models of human colorectal cancer. Bulletin of Siberian Medicine. 2022;21(3):50-58. https://doi.org/10.20538/1682-0363-2022-3-50-58

Views: 632


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1682-0363 (Print)
ISSN 1819-3684 (Online)