Preview

Бюллетень сибирской медицины

Расширенный поиск

Современные стратегии таргетной терапии фиброза печени

https://doi.org/10.20538/1682-0363-2022-3-154-165

Аннотация

Учитывая, что фиброз печени (ФП) является неблагоприятным событием естественного течения хронических заболеваний печени (ХЗП), скорейшее внедрение и широкое применение методов антифибротической терапии являются актуальной проблемой гепатологии. Цель обзора – описать современные подходы к таргетной терапии ФП.

Для поиска научных статей применялись база данных PubMed, поисковая система Google Scholar, Кокрановские систематические обзоры, научная электронная библиотека eLIBRARY.RU, а также пристатейные списки литературы. Соответствующие цели обзора публикации отбирались за период с 1998 по 2021 г. по терминам «фиброз печени», «патогенез», «лечение». Критерии включения ограничивались таргетной терапией ФП.

Несмотря на растущее число доказательств обратимости ФП, в настоящее время пока не существует каких-либо эффективных или одобренных для клинического применения схем его специфической терапии. Однако, принимая во внимание актуальность вопроса, научные поиски в этом направлении необходимы. Были изучены многочисленные лекарственные средства с хорошим профилем безопасности, которые хотя и предлагались для других целей, способны оказывать позитивное влияние на ФП. Кроме того, ряд отличных от фармакотерапии новаторских подходов вселяют оптимизм относительно успешности решения данной проблемы. Очевидно, что необходимы исследования, сосредоточенные на хорошо охарактеризованных группах пациентов с подтвержденными гистологическими, эластографическими, клиническими и радиологическими показателями. Это достаточно сложная задача, поскольку ключевым моментом будет стратификация риска на основе этнической принадлежности, этиологии и клинического статуса и для достоверной оценки потребуются очень большие размеры выборок. Тем не менее ее решение позволит повысить эффективность лечения пациентов с ХЗП, улучшит прогноз и качество их жизни, а также существенно уменьшит необходимость в трансплантации печени, потребность в которой во всем мире остается чрезвычайно высокой.

Об авторе

Д. В. Гарбузенко
Южно-Уральский государственный медицинский университет (ЮУГМУ)
Россия

Гарбузенко Дмитрий Викторович – доктор медицинских наук, профессор, кафедра факультетской хирургии, ЮУГМУ.

454092, Челябинск, ул. Воровского, 64


Конфликт интересов:

Автор декларирует отсутствие явных и потенциальных конфликтов интересов, связанных с публикацией настоящей статьи



Список литературы

1. Moon A.M., Singal A.G., Tapper E.B. Contemporary epidemiology of chronic liver disease and cirrhosis. Clin. Gastroenterol. Hepatol. 2020;18(12):2650–2666. DOI: 10.1016/j. cgh.2019.07.060.

2. Torok N.J., Dranoff J.A., Schuppan D., Friedman S.L. Strategies and endpoints of antifibrotic drug trials: Summary and recommendations from the AASLD Emerging Trends Conference, Chicago, June 2014. Hepatology. 2015;62(2):627–634. DOI: 10.1002/hep.27720.

3. Jung Y.K., Yim H.J. Reversal of liver cirrhosis: cur rent evidence and expectations. Korean J. Intern. Med. 2017;32(2):213–218. DOI: 10.3904/kjim.2016.268.

4. Chang Y., Li H. Hepatic antifibrotic pharmacotherapy: Are we approaching success? J. Clin. Transl. Hepatol. 2020;8(2):222– 229. DOI: 10.14218/JCTH.2020.00026.

5. Dewidar B., Meyer C., Dooley S., Meindl-Beinker A.N. TGF-β in hepatic stellate cell activation and liver fibrogenesis-updated 2019. Cells. 2019;8(11):1419. DOI: 10.3390/cells8111419.

6. George J., Roulot D., Koteliansky V.E., Bissell D.M. In vivo inhibition of rat stellate cell activation by soluble transforming growth factor beta type II receptor: a potential new therapy for hepatic fibrosis. Proc. Natl. Acad. Sci. USA. 1999;96(22):12719–12724. DOI: 10.1073/pnas.96.22.12719.

7. Okuno M., Akita K., Moriwaki H., Kawada N., Ikeda K., Kaneda K. et al. Prevention of rat hepatic fibrosis by the protease inhibitor, camostat mesilate, via reduced generation of active TGF-beta. Gastroenterology. 2001;120(7):1784–1800. DOI: 10.1053/gast.2001.24832.

8. Kang K.W., Kim Y.G., Cho M.K., Bae S.K., Kim C.W., Lee M.G. et al. Oltipraz regenerates cirrhotic liver through CCAAT/enhancer binding protein-mediated stellate cell inactivation. FASEB J. 2002;16(14):1988–1990. DOI: 10.1096/fj.02-0406fje.

9. Kim S.G., Kim Y.M., Choi J.Y., Han J.Y., Jang J.W. et al. Oltipraz therapy in patients with liver fibrosis or cirrho sis: a randomized, double-blind, placebo-controlled phase II trial. J. Pharm. Pharmacol. 2011;63(5):627–635. DOI: 10.1111/j.2042-7158.2011.01259.x.

10. Zhao J., Han M., Zhou L., Liang P., Wang Y., Feng S. et al. TAF and TDF attenuate liver fibrosis through NS5ATP9, TGFβ1/Smad3, and NF-κB/NLRP3 inflammasome signaling pathways. Hepatol. Int. 2020;14(1):145–160. DOI: 10.1007/s12072-019-09997-6.

11. Friedman S.L. Hepatic stellate cells: protean, multifunctional, and enigmatic cells of the liver. Physiol. Rev. 2008;88(1):125– 172. DOI: 10.1152/physrev.00013.2007.

12. Iqbal U., Dennis B.B., Li A.A., Cholankeril G., Kim D., Khan M.A. et al. Use of anti-platelet agents in the prevention of hepatic fibrosis in patients at risk for chronic liver disease: a systematic review and meta-analysis. Hepatol. Int. 2019;13(1):84–90. DOI: 10.1007/s12072-018-9918-2.

13. Traber P.G., Chou H., Zomer E., Hong F., Klyosov A., Fiel M.I. et al. Regression of fibrosis and reversal of cirrhosis in rats by galectin inhibitors in thioacetamide-induced liver disease. PLoS One. 2013;8(10):e75361. DOI: 10.1371/journal.pone.0075361.

14. Harrison S.A., Marri S.R., Chalasani N., Kohli R., Aronstein W., Thompson G.A. et al. Randomised clinical study: GR-MD-02, a galectin-3 inhibitor, vs. placebo in patients having non-alcoholic steatohepatitis with advanced fibrosis. Aliment. Pharmacol. Ther. 2016;44(11-12):1183–1198. DOI: 10.1111/apt.13816.

15. Frenette C.T., Morelli G., Shiffman M.L., Frederick R.T., Rubin R.A., Fallon M.B. et al. Emricasan improves liver function in patients with cirrhosis and high model for end-stage liver disease scores compared with placebo. Clin. Gastroenterol. Hepatol. 2019;17(4):774–783. DOI: 10.1016/j.cgh.2018.06.012.

16. Frenette C., Kayali Z., Mena E., Mantry P.S., Lucas K.J., Neff G. et al. IDN-6556-17 Study Investigators. Emricasan to prevent new decompensation in patients with NASH-related decompensated cirrhosis. J. Hepatol. 2021;74(2):274–282. DOI: 10.1016/j.jhep.2020.09.029.

17. Du Q.H., Zhang C.J., Li W.H., Mu Y., Xu Y., Lowe S. et al. Gan Shen Fu Fang ameliorates liver fibrosis in vitro and in vivo by inhibiting the inflammatory response and extracellular signal-regulated kinase phosphorylation. World J. Gastroenterol. 2020;26(21):2810–2820. DOI: 10.3748/wjg.v26.i21.2810.

18. Kawada N., Seki S., Inoue M., Kuroki T. Effect of antioxidants, resveratrol, quercetin, and N-acetylcysteine, on the functions of cultured rat hepatic stellate cells and Kupffer cells. Hepatology. 1998;27(5):1265–1274. DOI: 10.1002/hep.510270512.

19. Karaa A., Thompson K.J., McKillop I.H., Clemens M.G., Schrum L.W. S-adenosyl-L-methionine attenuates oxidative stress and hepatic stellate cell activation in an ethanol-LPS-induced fibrotic rat model. Shock. 2008;30(2):197–205. DOI: 10.1097/shk.0b013e318160f417.

20. Martínez-Chantar M.L., García-Trevijano E.R., Latasa M.U., Pérez-Mato I., Sánchez del Pino M.M., Corrales F.J. et al. Importance of a deficiency in S-adenosyl-L-methionine synthesis in the pathogenesis of liver injury. Am. J. Clin. Nutr. 2002;76(5):1177S–1182S. DOI: 10.1093/ajcn/76/5.1177S.

21. Lieber C.S., Weiss D.G., Groszmann R., Paronetto F., Schenker S. Veterans Affairs Cooperative Study 391 Group. II. Veterans Affairs Cooperative Study of polyenylphosphatidylcholine in alcoholic liver disease. Alcohol. Clin. Exp. Res. 2003;27(11):1765–1772. DOI: 10.1097/01.ALC.0000093743.03049.80.

22. Sanyal A.J., Chalasani N., Kowdley K.V., McCullough A., Diehl A.M., Bass N.M. et al. NASH CRN. Pioglitazone, vitamin E, or placebo for nonalcoholic steatohepatitis. N. Engl. J. Med. 2010;362(18):1675–1685. DOI: 10.1056/NEJMoa0907929.

23. Hernández-Aquino E., Muriel P. Beneficial effects of naringenin in liver diseases: Molecular mechanisms. World J. Gastroenterol. 2018;24(16):1679–1707. DOI: 10.3748/wjg.v24.i16.1679.

24. Mack C.L., Adams D., Assis D.N., Kerkar N., Manns M.P., Mayo M.J. et al. Diagnosis and Management of Autoimmune Hepatitis in Adults and Children: 2019 Practice Guidance and Guidelines From the American Association for the Study of Liver Diseases. Hepatology. 2020;72(2):671–722. DOI: 10.1002/hep.31065.

25. Albanis E., Friedman S.L. Hepatic fibrosis. Pathogenesis and principles of therapy. Clin. Liver Dis. 2001;5(2):315–334. DOI: 10.1016/s1089-3261(05)70168-9.

26. Lebrec D., Thabut D., Oberti F., Perarnau J.M., Condat B., Barraud H. et al. Pentocir Group. Pentoxifylline does not decrease short-term mortality but does reduce complica tions in patients with advanced cirrhosis. Gastroenterology. 2010;138(5):1755–1762. DOI: 10.1053/j.gastro.2010.01.040.

27. Cohen-Naftaly M., Friedman S.L. Current status of nov el antifibrotic therapies in patients with chronic liver disease. Therap. Adv. Gastroenterol. 2011;4(6):391–417. DOI: 10.1177/1756283X11413002.

28. Lugo-Baruqui A., Muñoz-Valle J.F., Arévalo-Gallegos S., Armendáriz-Borunda J. Role of angiotensin II in liver fibrosis-induced portal hypertension and therapeutic implications. Hepatol Res. 2010;40(1):95–104. DOI: 10.1111/j.1872034X.2009.00581.x.

29. Colmenero J., Bataller R., Sancho-Bru P., Domínguez M., Moreno M., Forns X. et al. Effects of losartan on hepatic expression of nonphagocytic NADPH oxidase and fibrogenic genes in patients with chronic hepatitis C. Am. J. Physiol. Gastrointest. Liver Physiol. 2009;297(4):G726–734. DOI: 10.1152/ajpgi.00162.2009.

30. Corey K.E., Shah N., Misdraji J., Abu Dayyeh B.K., Zheng H., Bhan A.K. et al. Theeffectofangiotensin-blockingagentsonliver fibrosis in patients with hepatitis C. Liver Int. 2009;29(5):748– 753. DOI: 10.1111/j.1478-3231.2009.01973.x.

31. Krenkel O., Puengel T., Govaere O., Abdallah A.T., Mossanen J.C., Kohlhepp M., Liepelt A. et al. Therapeutic inhibition of inflammatory monocyte recruitment reduces steatohepatitis and liver fibrosis. Hepatology. 2018;67(4):1270–1283. DOI: 10.1002/hep.29544.

32. Raoul J.L., Kudo M., Finn R.S., Edeline J., Reig M., Galle P.R. Systemic therapy for intermediate and advanced hepatocellular carcinoma: Sorafenib and beyond. Cancer Treat. Rev. 2018;68:16–24. DOI: 10.1016/j.ctrv.2018.05.006.

33. Garbuzenko D.V., Arefyev N.O., Kazachkov E.L. Antiangiogenic therapy for portal hypertension in liver cirrhosis: Current progress and perspectives. World J. Gastroenterol. 2018;24(33):3738–3748. DOI: 10.3748/wjg.v24.i33.3738.

34. Santoro R., Mangia A. Progress in promising anti-fibrotic therapies. Expert Rev. Gastroenterol. Hepatol. 2019;13(12):1145– 1152. DOI: 10.1080/17474124.2019.1688659.

35. Pawlak M., Baugé E., Bourguet W., De Bosscher K., Lalloyer F., Tailleux A. et al. The transrepressive activity of peroxisome proliferator-activated receptor alpha is necessary and sufficient to prevent liver fibrosis in mice. Hepatology. 2014;60(5):1593–1606. DOI: 10.1002/hep.27297.

36. Fernández-Miranda C., Pérez-Carreras M., Colina F., López-Alonso G., Vargas C., Solís-Herruzo J.A. A pilot trial of fenofibrate for the treatment of non-alcoholic fatty liver disease. Dig. Liver Dis. 2008;40(3):200–205. DOI: 10.1016/j.dld.2007.10.002.

37. Derosa G., Sahebkar A., Maffioli P. The role of various peroxisome proliferator-activated receptors and their ligands in clinical practice. J. Cell Physiol. 2018;233(1):153–161. DOI: 10.1002/jcp.25804.

38. Boyer-Diaz Z., Aristu-Zabalza P., Andrés-Rozas M., Robert C., Ortega-Ribera M., Fernández-Iglesias A. et al. Pan-PPAR agonist lanifibranor improves portal hypertension and hepatic fibrosis in experimental advanced chronic liver disease. J. Hepatol. 2021;74(5):1188–1199. DOI: 10.1016/j.jhep.2020.11.045.

39. Younossi Z.M., Ratziu V., Loomba R., Rinella M., Anstee Q.M., Goodman Z. et al. REGENERATE Study Investigators. Obeticholic acid for the treatment of non-alcoholic steatohepatitis: interim analysis from a multicentre, randomised, placebo-controlled phase 3 trial. Lancet. 2019;394(10215):2184–2196. DOI: 10.1016/S0140-6736(19)33041-7.

40. Hernandez E.D., Zheng L., Kim Y., Fang B., Liu B., Valdez R.A. et al. Tropifexor-mediated abrogation of steatohepatitis and fibrosis is associated with the antioxidative gene expression profile in rodents. Hepatol. Commun. 2019;3(8):1085–1097. DOI: 10.1002/hep4.1368.

41. Pedrosa M., Seyedkazemi S., Francque S., Sanyal A., Rinella M., Charlton M. et al. A randomized, double blind, multicenter, phase 2b study to evaluate the safety and efficacy of a combination of tropifexor and cenicriviroc in patients with nonalcoholic steatohepatitis and liver fibrosis: Study design of the TANDEM trial. Contemp. Clin. Trials. 2020;88:105889. DOI: 10.1016/j.cct.2019.105889.

42. An P., Wei G., Huang P., Li W., Qi X., Lin Y. et al. A novel non-bile acid FXR agonist EDP-305 potently suppresses liver injury and fibrosis without worsening of ductular reaction. Liver Int. 2020;40(7):1655–1669. DOI: 10.1111/liv.14490.

43. Namisaki T., Moriya K., Kitade M., Takeda K., Kaji K., Okura Y. et al. Effect of combined farnesoid X receptor agonist and angiotensin II type 1 receptor blocker on hepatic fibrosis. Hepatol. Commun. 2017;1(9):928–945. DOI: 10.1002/hep4.1104.

44. Beaven S.W., Wroblewski K., Wang J., Hong C., Bensinger S., Tsukamoto H. et al. Liver X receptor signaling is a determinant of stellate cell activation and susceptibility to fibrotic liver disease. Gastroenterology. 2011;140(3):1052–1062. DOI: 10.1053/j.gastro.2010.11.053.

45. Schultz J.R., Tu H., Luk A., Repa J.J., Medina J.C., Li L. et al. Role of LXRs in control of lipogenesis. Genes. Dev. 2000;14(22):2831–2838. DOI: 10.1101/gad.850400.

46. Wu B., Wang R., Li S., Wang Y., Song F., Gu Y. et al. Antifibrotic effects of Fraxetin on carbon tetrachloride-induced liver fibrosis by targeting NF-κB/IκBα, MAPKs and Bcl-2/ Bax pathways. Pharmacol. Rep. 2019;71(3):409–416. DOI: 10.1016/j.pharep.2019.01.008.

47. Sun X., Huang X., Zhu X., Liu L., Mo S., Wang H. et al. HBOA ameliorates CCl4-incuded liver fibrosis through inhibiting TGF-β1/Smads, NF-κB and ERK signaling pathways. Biomed. Pharmacother. 2019;115:108901. DOI: 10.1016/j.biopha.2019.108901.

48. Wu L., Mao C., Ming X. Modulation of Bcl-x alternative splicing induces apoptosis of human hepatic stellate cells. Biomed. Res. Int. 2016;2016:7478650. DOI: 10.1155/2016/7478650.

49. Martí-Rodrigo A., Alegre F., Moragrega Á.B., GarcíaGarcía F., Martí-Rodrigo P., Fernández-Iglesias A. et al. Rilpivirine attenuates liver fibrosis through selective STAT1-mediated apoptosis in hepatic stellate cells. Gut. 2020;69(5):920– 932. DOI: 10.1136/gutjnl-2019-318372.

50. Xiang M., Wang P.X., Wang A.B., Zhang X.J., Zhang Y., Zhang P. et al. Targeting hepatic TRAF1-ASK1 signaling to improve inflammation, insulin resistance, and hepatic steatosis. J. Hepatol. 2016;64(6):1365–1377. DOI: 10.1016/j.jhep.2016.02.002.

51. Loomba R., Lawitz E., Mantry P.S., Jayakumar S., Caldwell S.H., Arnold H. et al. GS-US-384-1497 Investigators. The ASK1 inhibitor selonsertib in patients with nonalcoholic steatohepatitis: a randomized, phase 2 trial. Hepatology. 2018;67(2):549–559. DOI: 10.1002/hep.29514.

52. Harrison S.A., Wong V.W., Okanoue T., Bzowej N., Vuppalanchi R., Younes Z. et al. STELLAR-3 and STELLAR-4 Investigators. Selonsertib for patients with bridging fibrosis or compensated cirrhosis due to NASH: Results from randomized phase III STELLAR trials. J. Hepatol. 2020;73(1):26–39. DOI: 10.1016/j.jhep.2020.02.027.

53. Wei X., Qian J., Yao W., Chen L., Guan H., Chen Y. et al. Hyperactivated peripheral invariant natural killer T cells correlate with the progression of HBV-relative liver cirrhosis. Scand. J. Immunol. 2019;90(2):e12775. DOI: 10.1111/sji.12775.

54. Hernández-Aquino E., Quezada-Ramírez M.A., Silva-Olivares A., Ramos-Tovar E., Flores-Beltrán R.E., Segovia J. et al. Curcumin downregulates Smad pathways and reduces hepatic stellate cells activation in experimental fibrosis. Ann. Hepatol. 2020;19(5):497–506. DOI: 10.1016/j.aohep.2020.05.006.

55. Nouri-Vaskeh M., Malek Mahdavi A., Afshan H., Alizadeh L., Zarei M. Effect of curcumin supplementation on disease severity in patients with liver cirrhosis: A randomized controlled trial. Phytother. Res. 2020;34(6):1446–1454. DOI: 10.1002/ptr.6620.

56. Poo J.L., Torre A., Aguilar-Ramírez J.R., Cruz M., Mejía-Cuán L., Cerda E. et al. Benefits of prolonged-release pirfenidone plus standard of care treatment in patients with advanced liver fibrosis: PROMETEO study. Hepatol. Int. 2020;14(5):817–827. DOI: 10.1007/s12072-020-10069-3.

57. Nikolaidis N., Kountouras J., Giouleme O., Tzarou V., Chatzizisi O., Patsiaoura K. et al. Colchicine treatment of liver fibrosis. Hepatogastroenterology. 2006;53(68):281–285.

58. Rambaldi A., Gluud C. Colchicine for alcoholic and non-alcoholic liver fibrosis and cirrhosis. Cochrane Database Syst. Rev. 2001;(3):CD002148. DOI: 10.1002/14651858.CD002148.

59. Chang Y., Li H. Hepatic antifibrotic pharmacotherapy: Are we approaching success? J. Clin. Transl. Hepatol. 2020;8(2):222– 229. DOI: 10.14218/JCTH.2020.00026.

60. Siller-López F., Sandoval A., Salgado S., Salazar A., Bueno M., Garcia J. et al. Treatment with human metalloproteinase-8 gene delivery ameliorates experimental rat liver cirrhosis. Gastroenterology. 2004;126(4):1122–1133. DOI: 10.1053/j.gastro.2003.12.045.

61. Ohayon O., Mawasi N., Pevzner A., Tryvitz A., Gildor T., Pines M. et al. Halofuginone upregulates the expression of heparanase in thioacetamide-induced liver fibrosis in rats. Lab. Invest. 2008;88(6):627–633. DOI: 10.1038/labinvest.2008.30.

62. Sugino H., Kumagai N., Watanabe S., Toda K., Takeuchi O., Tsunematsu S. et al. Polaprezinc attenuates liver fibrosis in a mouse model of non-alcoholic steatohepatitis. J. Gastroenterol. Hepatol. 2008;23(12):1909–1916. DOI: 10.1111/j.14401746.2008.05393.x.

63. Ikenaga N., Peng Z.W., Vaid K.A., Liu S.B., Yoshida S., Sverdlov D.Y. et al. Selective targeting of lysyl oxidase-like 2 (LOXL2) suppresses hepatic fibrosis progression and accelerates its reversal. Gut. 2017;66(9):1697–1708. DOI: 10.1136/gutjnl-2016-312473.

64. Meissner E.G., McLaughlin M., Matthews L., Gharib A.M., Wood B.J., Levy E. et al. Simtuzumab treatment of advanced liver fibrosis in HIV and HCV-infected adults: results of a 6-month open-label safety trial. Liver Int. 2016;36(12):1783– 1792. DOI: 10.1111/liv.13177.

65. Flores-Contreras L., Sandoval-Rodríguez A.S., MenaEnriquez M.G., Lucano-Landeros S., Arellano-Olivera I., Alvarez-Álvarez A. et al. Treatment with pirfenidone for two years decreases fibrosis, cytokine levels and enhances CB2 gene expression in patients with chronic hepatitis C. BMC Gastroenterol. 2014;14:131. DOI: 10.1186/1471-230X-14-131.

66. Verma N., Kumar P., Mitra S., Taneja S., Dhooria S., Das A. et al. Drug idiosyncrasy due to pirfenidone presenting as acute liver failure: Case report and mini-review of the literature. Hepatol. Commun. 2017;2(2):142–147. DOI: 10.1002/hep4.1133.

67. Al-Dhamin Z., Liu L.D., Li D.D., Zhang S.Y., Dong S.M., Nan Y.M. Therapeutic efficiency of bone marrow-derived mesenchymal stem cells for liver fibrosis: a systematic review of in vivo studies. World J. Gastroenterol. 2020;26(47):7444– 7469. DOI: 10.3748/wjg.v26.i47.7444.

68. Vainshtein J.M., Kabarriti R., Mehta K.J., Roy-Chowdhury J., Guha C. Bone marrow-derived stromal cell therapy in cirrhosis: clinical evidence, cellular mechanisms, and implications for the treatment of hepatocellular carcinoma. Int. J. Radi at. Oncol. Biol. Phys. 2014;89(4):786–803. DOI: 10.1016/j.ijrobp.2014.02.017.

69. Breitkopf-Heinlein K., Syn W.K. Harnessing liver progenitors in the treatment of liver fibrosis: a step in the right direction? Gut. 2020;69(6):975–976. DOI: 10.1136/gutjnl-2019-320203.

70. Kim G., Eom Y.W., Baik S.K., Shin Y., Lim Y.L., Kim M.Y. et al. Therapeutic Effects of Mesenchymal Stem Cells for Patients with Chronic Liver Diseases: Systematic Review and Meta-analysis. J. Korean Med. Sci. 2015;30(10):1405–1415. DOI: 10.3346/jkms.2015.30.10.1405.

71. Jiang B., Yan L., Miao Z., Li E., Wong K.H., Xu R.H. Spheroidal formation preserves human stem cells for prolonged time under ambient conditions for facile storage and transportation. Biomaterials. 2017;133:275–286. DOI: 10.1016/j. biomaterials.2017.03.050.

72. Ullah M., Liu D.D., Thakor A.S. Mesenchymal Stromal cell homing: mechanisms and strategies for improvement. iScience. 2019;15:421–438. DOI: 10.1016/j.isci.2019.05.004.

73. Salama H., Zekri A.R., Zern M., Bahnassy A., Loutfy S., Shalaby S. et al. Autologous hematopoietic stem cell transplantation in 48 patients with end-stage chronic liver diseases. Cell Transplant. 2010;19(11):1475–1486. DOI: 10.3727/096368910X514314.

74. Zekri A.R., Salama H., Medhat E., Musa S., Abdel-Haleem H., Ahmed O.S. et al. The impact of repeated autologous infusion of haematopoietic stem cells in patients with liver insufficiency. Stem Cell Res. Ther. 2015;6(1):118. DOI: 10.1186/s13287-015-0106-1.

75. Suk K.T., Yoon J.H., Kim M.Y., Kim C.W., Kim J.K., Park H. et al. Transplantation with autologous bone marrow-de rived mesenchymal stem cells for alcoholic cirrhosis: Phase 2 trial. Hepatology. 2016;64(6):2185–2197. DOI: 10.1002/hep.28693.

76. Salama H., Zekri A.R., Medhat E., Al Alim S.A., Ahmed O.S., Bahnassy A.A. et al. Peripheral vein infusion of autologous mesenchymal stem cells in Egyptian HCV-positive patients with end-stage liver disease. Stem Cell Res. Ther. 2014;5(3):70. DOI: 10.1186/scrt459.

77. Mohamadnejad M., Alimoghaddam K., Bagheri M., Ashra fi M., Abdollahzadeh L., Akhlaghpoor S. et al. Randomized placebo-controlled trial of mesenchymal stem cell transplantation in decompensated cirrhosis. Liver Int. 2013;33(10):1490– 1496. DOI: 10.1111/liv.12228.


Рецензия

Для цитирования:


Гарбузенко Д.В. Современные стратегии таргетной терапии фиброза печени. Бюллетень сибирской медицины. 2022;21(3):154-165. https://doi.org/10.20538/1682-0363-2022-3-154-165

For citation:


Garbuzenko D.V. Current strategies for targeted therapy of liver fibrosis. Bulletin of Siberian Medicine. 2022;21(3):154-165. https://doi.org/10.20538/1682-0363-2022-3-154-165

Просмотров: 419


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 1682-0363 (Print)
ISSN 1819-3684 (Online)