Preview

Bulletin of Siberian Medicine

Advanced search

Local biocompatibility and biochemical profile of hepatic cytolysis in subcutaneous implantation of polylactide matrices

https://doi.org/10.20538/1682-0363-2022-4-63-71

Abstract

The aim of the study was to investigate local biocompatibility and systemic effects of nonwoven polylactide (PLA) matrices on blood and liver parameters after their subcutaneous implantation in Wistar rats.

Materials and methods. Bioabsorbable fibrous PLA matrices were produced by electrospinning and had dimensions (10 × 10 mm², thickness of no more than 0.5 mm; fiber diameter in the matrix ~1 μm) appropriate for subcutaneous implantation in white laboratory rats. Polymer implants were sterilized in ethylene oxide vapor. Thirty days after the implantation of PLA matrices, local biocompatibility according to GOST ISO 10993-6-2011, cellular parameters (total leukocyte count, hemogram, erythrocyte count, hemoglobin concentration), and biochemical blood parameters (lactate concentration, alanine aminotransferase (ALT) and aspartate aminotransferase (AST) levels) were studied, and a standard histologic evaluation of the liver was performed.

Results. PLA matrix samples were mild local irritants on a scale of 1–1.9 points according to GOST ISO 10993-6-2011 criteria 30 days after the subcutaneous implantation. The median density of distribution of multinucleated giant cells (MNGCs) in the connective tissue around and in PLA matrices was 1,500 (1,350; 1,550) per 1 mm² of a slice. Pronounced leukocytic reaction due to lymphocytosis was noted (an increase by 1.7 times compared with a sham-operated (SO) control group, р < 0.02). The absence of a significant neutrophil count in the blood revealed sterile inflammation proceeding in the subcutaneous tissue around the PLA materials. Normalization of hepatic cytolysis markers (ALT and AST activity) in the blood without pronounced changes in the structure of the liver and the number of binuclear hepatocytes was noted. These markers were increased in SO controls (ALT up to 123% and AST up to 142%, p < 0.001 compared with values in the intact group).

Conclusion. Nonwoven PLA matrices are biocompatible with subcutaneous tissue, undergo bioresorption by MNGCs, and have a distant protective effect on the functional state of the liver in laboratory animals. Hypotheses on the detected systemic effect during subcutaneous implantation of PLA matrices were discussed; however, specific mechanisms require further study.

About the Authors

E. A. Ivanova
Siberian State Medical University
Russian Federation

2, Mosсow Trakt, Tomsk, 63405



A. N. Dzyuman
Siberian State Medical University
Russian Federation

2, Mosсow Trakt, Tomsk, 63405



M. V. Dvornichenko
Siberian State Medical University
Russian Federation

2, Mosсow Trakt, Tomsk, 63405



References

1. Jafari M., Paknejad Z., Rad M.R., Motamedian S.R., Eghbal M.J., Nadjmi N. et al. Polymeric scaffolds in tissue engineering: a literature review. J. Biomed. Mater. Res. B Appl. Biomater. 2017;105(2):431–459. DOI: 10.1002/jbm.b.33547.

2. Jukkala-Partio K., Laitinen O., Vasenius J., Partio E.K., Toivonen T., Tervahartiala P. et al. Healing of subcapital femoral osteotomies fixed with self-reinforced poly-L-lactide screws: an experimental long-term study in sheep. Arch. Orthop. Trauma Surg. 2002;122(6):360–364. DOI: 10.1007/s00402-0010379-y.

3. Zhou J., Han S., Dou Y., Lu J., Wang C., He H. et al. Nanostructured poly(L-lactide) matrix as novel platform for drug delivery. Int. J. Pharm. 2013;448(1):175–188. DOI: 10.1016/j.ijpharm.2013.03.038.

4. Wulf K., Arbeiter D., Matschegewski C., Teske M., Huling J., Schmitz K.P. et al. Smart releasing electrospun nanofibers-poly: L. lactide fibers as dual drug delivery system for biomedical application. Biomed. Mater. 2020;16(1):015022. DOI: 10.1088/1748-605X/abbec8.

5. Biomaterials science: an introduction to materials in medicine; 2nd ed.; ed. by B.D. Ratner, A.S. Hoffman, F.J. Schoen, J.E. Lemons. San Diego: Elsevier Academic Press; 2004:851.

6. Do A.V., Khorsand B., Geary S.M., Salem A.K. 3D printing of scaffolds for tissue regeneration applications. Adv. Healthc. Mater. 2015;4(12):1742–1762. DOI: 10.1002/adhm.201500168.

7. Daristotle J.L., Behrens A.M., Sandler A.D., Kofinas P.A Review of the Fundamental Principles and Applications of Solution Blow Spinning. ACS Appl. Mater. Interfaces. 2016;8(51):34951–34963. DOI: 10.1021/acsami.6b12994.

8. Tverdokhlebov S.I., Stankevich K.S., Bolbasov E.N., Khlusov I.A., Kulagina I.V., Zaytsev K.V. Nonwoven polylactide scaffolds obtained by solution blow spinning and the in vitro degradation dynamics. Advanced Materials Research. 2014;872:257–263.

9. Bolbasov E.N., Popkov A.V., Popkov D.A., Gorbach E.N., Khlusov I.A., Golovkin A.S.et al. Osteoinductive composite coatings for flexible intramedullary nails. Mater Sci. Eng. C Mater. Biol. Appl. 2017;75:207–220. DOI: 10.1016/j.msec.2017.02.073.

10. Меньшиков В.В., Делекторская Л.Н., Золотницкая Р.П. и др. Лабораторные методы исследования в клинике: справочник; под ред. В.В. Меньшикова. М.: 1987:368.

11. Автандилов Г.Г. Диагностическая медицинская плоидометрия. М.: Медицина; 2006:192.

12. Clark D., Nakamura M., Miclau T., Marcucio R. Effects of aging on fracture healing. Curr. Osteoporos. Rep. 2017;15(6):601–608. DOI: 10.1007/s11914-017-0413-9.

13. Loi F., Córdova L.A., Pajarinen J., Lin T.H., Yao Z., Goodman S.B. Inflammation, fracture and bone repair. Bone. 2016;86:119–130. DOI: 10.1016/j.bone.2016.02.020.

14. Юрова К.А., Хазиахматова О.Г., Малащенко В.В., Норкин И.К., Иванов П.А., Хлусов И.А. и др. Клеточно-молекулярные аспекты воспаления, ангиогенеза и остеогенеза. Краткий обзор. Цитология. 2020;62(5):305–315. DOI: 10.31857/S0041377120050090.

15. ElHawary H., Baradaran A., Abi-Rafeh J., Vorstenbosch J., Xu L., Efanov J.I. Bone healing and inflammation: Principles of fracture and repair. Semin. Plast. Surg. 2021;35(3):198– 203. DOI: 10.1055/s-0041-1732334.

16. Файерс Y. Биологические методы лечения фактором некроза опухолей: преклинические исследования. В кн. Биологические методы лечения онкологических заболеваний: пер. с англ.; под ред. В.T. ДеВита, С. Хеллмана, С.А. Розенберга. М.: Медицина; 2002:309–343.

17. Milenkovic L., Rettori V., Snyder G.D., Beutler B., McCann S.M. Cachectin alters anterior pituitary hormone release by a direct action in vitro. Proc. Natl. Acad. Sci. U S A. 1989;86(7):2418–2422. DOI: 10.1073/pnas.86.7.2418.

18. Гормонотерапия: пер. с нем.; под ред. Х. Шамбаха, Г. Кнаппе, В. Карола. М.: Медицина, 1988:416.

19. Гольдберг Е.Д., Дыгай А.М., Yдут В.В., Наумов С.А., Хлусов И.А. Закономерности структурной организации систем жизнеобеспечения в норме и при развитии патологического процесса. Томск, 1996:283.

20. Yang W.H., Park H., Grau M., Heine O. Decreased blood glucose and lactate: Is a useful indicator of recovery ability in athletes? Int. J. Environ. Res. Public Health. 2020;17(15):5470. DOI: 10.3390/ijerph17155470.

21. Selye H., Lemire Y., Bajusz E. Induction of bone, cartilage and hemopoietic tissue by subcutaneously implanted tissue diaphragms. Wilhelm Roux Arch. Entwickl. Mech. Org. 1960;151(5):572–585. DOI: 10.1007/BF00577813.

22. Войтенко Н.Г., Макарова М.Н., Зуева А.А. Вариабельность биохимических показателей крови и установление референсных интервалов в доклинических исследованиях. Сообщение 1: крысы. Лабораторные животные для научных исследований. 2020;(1):47–53. DOI: 10.29296/2618723X-2020-01-06.

23. Лифшиц В.М., Сидельникова В.И. Биохимические анализа в клинике: справочник. М.: МИА; 1998:303.

24. Хлусов И.А., Хлусова М.Ю. Способ дистантной стимуляции регенерации гепатоцитов: Патент РФ на изобретение № 2590859 от 15.06.2016 (опубликовано 10.07.2016, Бюл. № 19).

25. Северин М.В., Юшков Б.Г., Ястребов А.П. Регенерация тканей при экстремальных воздействиях на организм. Екатеринбург: YрГМИ, 1993:187.

26. Бадер А. Способ регенерации ткани: Патент РФ на изобретение № 2392314 от 20.06.2010.

27. Haas R., Smith J., Rocher-Ros V., Nadkarni S., Montero-Melendez T., D'Acquisto F. et al. Lactate regulates metabolic and pro-inflammatory circuits in control of T cell migration and effector functions. PLoS Biol. 2015;13(7):e1002202. DOI: 10.1371/journal.pbio.1002202.

28. Pucino V., Bombardieri M., Pitzalis C., Mauro C. Lactate at the crossroads of metabolism, inflammation, and autoimmunity. Eur. J. Immunol. 2017;47(1):14–21. DOI: 10.1002/eji.201646477.

29. Бабаева А.Г. Регенерация и система иммуногенеза. М.: Медицина; 1985:256.

30. Xлусов И.А., Игумнов В.А., Чухнова Д.Л., Митасова O.Л., Зайцев К.В., Абдулкина Н.Г. и др. Локальные и системные эффекты имплантатов гиалуроновой кислоты при коррекции возрастных изменений кожи. Бюллетень сибирской медицины. 2013;12(1):61–68.

31. Grémare A., Guduric V., Bareille R., Heroguez V., Latour S., L'heureux N. et al. Characterization of printed PLA scaffolds for bone tissue engineering. J. Biomed. Mater. Res. A. 2018;106(4):887–894. DOI: 10.1002/jbm.a.36289.

32. Gangolphe L., Leon-Valdivieso C.Y., Nottelet B., Déjean S., Bethry A., Pinese C. et al. Electrospun microstructured PLAbased scaffolds featuring relevant anisotropic, mechanical and degradation characteristics for soft tissue engineering. Mater Sci. Eng. C Mater. Biol. Appl. 2021;129:112339. DOI: 10.1016/j.msec.2021.112339.

33. Wang M., Pei H., Zhang L., Guan L., Zhang R., Jia Y. et al. Hepatogenesis of adipose-derived stem cells on poly-lactide-co-glycolide scaffolds: in vitro and in vivo studies. Tissue Eng. Part C Methods. 2010;16(5):1041–1050. DOI: 10.1089/ten.TEC.2009.0244.

34. Diomede F., Gugliandolo A., Cardelli P., Merciaro I., Ettorre V., Traini T. et al. Three-dimensional printed PLA scaffold and human gingival stem cell-derived extracellular vesicles: A new tool for bone defect repair. Stem. Cell Res. Ther. 2018;9(1):104. DOI: 10.1186/s13287-018-0850-0.

35. Eğri S., Eczacıoğlu N. Sequential VEGF and BMP-2 releasing PLA-PEG-PLA scaffolds for bone tissue engineering: I. Design and in vitro tests. Artif. Cells Nanomed. Biotechnol. 2017;45(2):321–329. DOI: 10.3109/21691401.2016.1147454.


Review

For citations:


Ivanova E.A., Dzyuman A.N., Dvornichenko M.V. Local biocompatibility and biochemical profile of hepatic cytolysis in subcutaneous implantation of polylactide matrices. Bulletin of Siberian Medicine. 2022;21(4):63-71. https://doi.org/10.20538/1682-0363-2022-4-63-71

Views: 515


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1682-0363 (Print)
ISSN 1819-3684 (Online)