Preview

Bulletin of Siberian Medicine

Advanced search

Study of associations of blood proteins with development of unstable atherosclerotic plaques in coronary arteries by quantitative proteomics

https://doi.org/10.20538/1682-0363-2022-4-121-129

Abstract

Aim. To study the associations of blood proteins with the presence of unstable atherosclerotic plaques in the arteries in patients with coronary artery disease using the quantitative proteomic analysis.

Materials and methods. The study included patients with coronary artery disease (n = 40); the average age of patients was 58 ± 7 years. Material for the study was blood serum. Protein concentrations in serum samples were determined using the PeptiQuant Plus Proteomics Kit (Cambridge Isotope Laboratories, USA). Protein fractions were identified using the liquid chromatograph and tandem mass spectrometer Q-TRAP 6500.

Results. Mass spectrometry revealed an increased concentration of proteins, such as fibrinogen, fibulin-1, and complement factor H, in the serum samples of patients with unstable atherosclerotic plaques. It took place with a simultaneous decrease in the levels of α 2-antiplasmin, heparin cofactor II, coagulation factor XII, plasminogen, prothrombin, vitronectin, complement proteins (C1, C3, C7, C9), and complement factor B. The differences were considered significant at p < 0.05. It was revealed that the presence of unstable atherosclerotic plaques was associated with the level of fibulin-1 (Exp(B) = 1.008; р = 0.05), plasminogen (Exp(В) = 0.995; р = 0.027), and coagulation factor X (Exp(В) = 0.973; р = 0.037).

Conclusion. An increased concentration of fibulin-1 can be considered as a potential biomarker of unstable atherosclerotic plaque development in coronary artery disease. The possibility of using the studied proteins as biomarkers of unstable atherosclerotic plaques requires further studies on their potential role in the development of this disease.

About the Authors

E. M. Stakhneva
Research Institute of Internal and Preventive Medicine – Branch of the Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences
Russian Federation

175/1, B. Bogatkova Str., Novosibirsk, 63008



E. V. Kashtanova
Research Institute of Internal and Preventive Medicine – Branch of the Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences
Russian Federation

175/1, B. Bogatkova Str., Novosibirsk, 63008



Ya. V. Polonskaya
Research Institute of Internal and Preventive Medicine – Branch of the Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences
Russian Federation

175/1, B. Bogatkova Str., Novosibirsk, 63008



E. V. Striukova
Research Institute of Internal and Preventive Medicine – Branch of the Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences
Russian Federation

175/1, B. Bogatkova Str., Novosibirsk, 63008



V. S. Shramko
Research Institute of Internal and Preventive Medicine – Branch of the Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences
Russian Federation

175/1, B. Bogatkova Str., Novosibirsk, 63008



E. V. Sadovski
Research Institute of Internal and Preventive Medicine – Branch of the Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences
Russian Federation

175/1, B. Bogatkova Str., Novosibirsk, 63008



A. V. Kurguzov
Meshalkin National Medical Research Center
Russian Federation

15, Rechkunovskaya Str., Novosibirsk, 630055



I. S. Murashov
Meshalkin National Medical Research Center
Russian Federation

15, Rechkunovskaya Str., Novosibirsk, 630055



A. M. Chernyavskii
Meshalkin National Medical Research Center
Russian Federation

15, Rechkunovskaya Str., Novosibirsk, 630055



Yu. I. Ragino
Research Institute of Internal and Preventive Medicine – Branch of the Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences
Russian Federation

175/1, B. Bogatkova Str., Novosibirsk, 63008



References

1. Bos D., Arshi B., van den Bouwhuijsen Q.J.A., Ikram M.K., Selwaness M., Vernooij M.W. et al. Atherosclerotic carotid plaque composition and Incident stroke and coronary events. J. Am. Coll. Cardiol. 2021;77(11):1426–1435. DOI: 10.1016/j.jacc.2021.01.038

2. Yuan S., Burgess S., Laffan M., Mason A.M., Dichgans M., Gill D. et al. Genetically roxied Inhibition of Coagulation Factors and Risk of Cardiovascular Disease: A Mendelian Randomization Study. J. Am. Heart Assoc. 2021;10(8):e019644. DOI: 10.1161/JAHA.120.019644.

3. Stakhneva E.M., Meshcheryakova I.A., Demidov E.A., Starostin K.V., Sadovski E.V., Peltek S.E. et al. A Proteomic Study of Atherosclerotic Plaques in Men with Coronary Atherosclerosis. Diagnostics. 2019;9(4):E177. DOI: 10.3390/diagnostics9040177.

4. Badimon L., Vilahur G. Thrombosis formation on atherosclerotic lesions and plaque rupture. J. Intern. Med. 2014;276(6):618– 632. DOI: 10.1111/joim.12296.

5. Luo M., Ji Y., Luo Y., Li R., Fay W.P., Wu J. Plasminogen activator inhibitor-1 regulates the vascular expression of vitronectin. J. Thromb. Haemost. 2017;15(12):2451–2460. DOI: 10.1111/jth.13869.

6. Ekmekçi H., Güngör Öztürk Z., Ekmekçi O.B., Işler Bütün I., Beşirli K., Gode S. et al. Significance of vitronectin and PAI-1 activity levels in carotid artery disease: comparison of symptomatic and asymptomatic patients. Minerva Med. 2013;104(2):215–223.

7. Ekmekci H., Sonmez H., Ekmekci O.B., Ozturk Z., Domanic N., Kokoglu E. Plasma vitronectin levels in patients with coronary atherosclerosis are increased and correlate with extent of disease. J. Thromb. Thrombolysis. 2002;14(3):221–225. DOI: 10.1023/a:1025000810466.

8. Yamagishi K., Aleksic N., Hannan P.J., Folsom A.R.; ARIC Study Inverstigators. Coagulation factors II, V, IX, X, XI, and XII, plasminogen, and alpha-2 antiplasmin and risk of coronary heart disease. J. Atheroscler. Thromb. 2010;17(4):402–409. DOI: 10.5551/jat.3673.

9. Ragino Y.I., Striukova E.V., Murashov I.S., Polonskaya Y.V., Volkov A.M., Kurguzov A.V. et al. Association of some hemostasis and endothelial dysfunction factors with probability of presence of vulnerable atherosclerotic plaques in patients with coronary atherosclerosis. BMC Res. Notes. 2019;12(1):336. DOI: 10.1186/s13104-019-4360-7.

10. Lu J., Niu D., Zheng D., Zhang Q., Li W. Predictive value of combining the level of lipoprotein-associated phospholipase A2 and antithrombin III for acute coronary syndrome risk. Biomed. Rep. 2018;9(6):517–522. DOI: 10.3892/br.2018.1162.

11. Elmissbah T.E., Iderous M.E., Al-Qahtani F.M., Elaskary A., Dahlawi H. Assessment of antithrombin III and protein C in Saudi myocardial infarction patients. Clin. Lab. 2021;67(10). DOI: 10.7754/Clin.Lab.2021.201206.

12. Sridharan V., Tripathi P., Sharma S.K., Moros E.G., Corry P.M., Lieblong B.J. et al. Cardiac inflammation after local irradiation is influenced by the kallikrein-kinin system. Cancer Res. 2012;72(19):4984–4992. DOI: 10.1158/0008-5472.CAN-121831

13. Koch M., Bonaventura K., Spillmann F., Dendorfer A., Schultheiss H.P., Tschöpe C. Attenuation of left ventricular dysfunction by an ACE inhibitor after myocardial infarction in a kininogen-deficient rat model. Biol. Chem. 2008;389(6):719– 723. DOI: 10.1515/BC.2008.083.

14. Lubbers R., van Essen M.F., van Kooten C., Trouw L.A. Production of complement components by cells of the immune system. Clin. Exp. Immunol. 2017;188(2):183–194. DOI: 10.1111/cei.12952.

15. Martin-Ventura J.L., Martinez-Lopez D., Roldan-Montero R., Gomez-Guerrero C., Blanco-Colio L.M. Role of complement system in pathological remodeling of the vascular wall. Mol. Immunol. 2019;114:207–215. DOI: 10.1016/j.molimm.2019.06.016.

16. Vlaicu S.I., Tatomir A., Rus V., Mekala A.P., Mircea P.A., Niculescu F. et al. The role of complement activation in atherogenesis: the first 40 years. Immunol. Res. 2016;64(1):1–13. DOI: 10.1007/s12026-015-8669-6.

17. Ge X., Xu C., Liu Y., Zhu K., Zeng H., Su J. et al. Complement activation in the arteries of patients with severe atherosclerosis. Int. J. Clin. Exp. Pathol. 2018;11(1):1–9.

18. Rawish E., Sauter M., Sauter R., Nording H., Langer H.F. Complement, inflammation and thrombosis. Br. J. Pharmacol. 2021;178(14):2892–2904. DOI: 10.1111/bph.15476.

19. Speth C., Rambach G., Würzner R., Lass-Flörl C., Kozarcanin H., Hamad O.A. et al. Complement and platelets: Mutual interference in the immune network. Mol. Immunol. 2015;67(1):108– 118. DOI: 10.1016/j.molimm.2015.03.244.

20. Amara U., Rittirsch D., Flierl M., Bruckner U., Klos A., Gebhard F. et al. Interaction between the coagulation and complement system. Adv. Exp. Med. Biol. 2008;632:71–79. DOI: 10.1007/978-0-387-78952-1_6.

21. Tulamo R., Frösen J., Paetau A., Seitsonen S., Hernesniemi J., Niemelä M. et al. Lack of complement inhibitors in the outer intracranial artery aneurysm wall associates with complement terminal pathway activation. Am. J. Pathol. 2010;177(6):3224–3232. DOI: 10.2353/ajpath.2010.091172.

22. Wezel A., de Vries M.R., Lagraauw H.M., Foks A.C., Kuiper J., Quax P.H. et al. Complement factor C5a induces atherosclerotic plaque disruptions. J. Cell Mol. Med. 2014;18(10):2020– 2030. DOI: 10.1111/jcmm.12357.

23. Wu G., Hu W., Shahsafaei A., Song W., Dobarro M., Sukhova G.K. et al. Complement regulator CD59 protects against atherosclerosis by restricting the formation of complement membrane attack complex. Circ. Res. 2009;104(4):550558. DOI: 10.1161/CIRCRESAHA.108.191361.


Review

For citations:


Stakhneva E.M., Kashtanova E.V., Polonskaya Ya.V., Striukova E.V., Shramko V.S., Sadovski E.V., Kurguzov A.V., Murashov I.S., Chernyavskii A.M., Ragino Yu.I. Study of associations of blood proteins with development of unstable atherosclerotic plaques in coronary arteries by quantitative proteomics. Bulletin of Siberian Medicine. 2022;21(4):121-129. https://doi.org/10.20538/1682-0363-2022-4-121-129

Views: 512


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1682-0363 (Print)
ISSN 1819-3684 (Online)