Prognostic value of the inferior vena cava diameter, lung ultrasound, and the NT-proBNP level in patients with acute decompensated heart failure and obesity
https://doi.org/10.20538/1682-0363-2023-1-33-40
Abstract
Aim. To evaluate the clinical and prognostic value of the inferior vena cava (IVC) diameter, the sum of B-lines according to lung ultrasound (LUS), and the NT-proBNP level in patients with acute decompensated heart failure (ADHF) and obesity.
Materials and methods. A single-center, prospective study included 162 patients with ADHF (66% men, age 68 ± 12 years, left ventricular ejection fraction (LVEF) 44 (35; 54)%, median level of NT-proBNP 4,246 (1,741; 6,837) pg / ml). 27.8% of patients were overweight, 55% of patients had obesity. Upon admission, all patients underwent a standard clinical and laboratory examination, including lung ultrasound with the calculation of the sum of B-lines, IVC ultrasound, and determination of the NT-proBNP level.
Results. Obese patients had a smaller sum of B-lines according to lung ultrasound than overweight patients and those with normal weight [33 (21–51); 38 (27–54), and 42 (30–58), respectively; p = 0.002] and a lower level of
NT-proBNP [3,404 (1,630; 5,516); 4,458 (2,697; 5,969); 5,085 (2,871; 7,351) pg / ml, respectively, p = 0.013]. The
IVC diameter did not differ significantly depending on body mass index (BMI): with obesity – 2.3 (1.9–2.8) cm, with overweightness – 2.3 (1.9–2.8) cm, and with normal weight – 2.2 (1.8–2.4) mm, p = 0.324.
According to the multivariate Cox regression analysis, the sum of B-lines > 7 at discharge (hazard ratio (HR) 8.90, 95% confidence interval (CI) 2.03–38.30, p = 0.003) and IVC > 2.4 cm at admission (HR 5.42, 95% CI 1.04–28.13, p = 0.045) were independently associated with a higher risk of 12-month mortality from cardiovascular disease.
Conclusion. Therefore, lung ultrasound with B-line quantification and assessment of the IVC diameter may be useful in obese patients with ADHF to stratify the risk of 12-month mortality from cardiovascular disease.
About the Authors
Zh. D. KobalavaRussian Federation
8, Mikluho-Maklaya Str., Moscow, 117198
F. E. Cabello Montoya
Russian Federation
8, Mikluho-Maklaya Str., Moscow, 117198
A. F. Safarova
Russian Federation
8, Mikluho-Maklaya Str., Moscow, 117198;
61, Vavilova Str., Moscow, 117292
V. V. Tolkacheva
Russian Federation
8, Mikluho-Maklaya Str., Moscow, 117198
A. A. Abramov
Russian Federation
8, Mikluho-Maklaya Str., Moscow, 117198
References
1. Brainin P., Claggett B., Lewis E.F., Dwyer K.H., Merz A.A., Silverman M.B. et al. Body mass index and B-lines on lung ultrasonography in chronic and acute heart failure. ESC Heart Failure. 2020; 7(3):1201–1209. DOI: 10.1002/ ehf2.12640.
2. Palazzuoli A., Ruocco G., Franci B., Evangelista I., Lucani B., Nuti R. et al. Ultrasound indices of congestion in patients with acute heart failure according to body mass index. Clinical Research in Cardiology: Official Journal of the German Cardiac Society. 2020;109(11):1423–1433. DOI: 10.1007/s00392-02001642-9.
3. Кобалава Ж.Д., Сафарова А.Ф., Соловьева А.E., Кабельо Монтойа Ф.Е., Мерай И.А., Шаварова Е.К. и др. Легочный застой по данным ультразвукового исследования у пациентов с декомпенсацией сердечной недостаточности. Кардиология. 2019;59(8):5–14. DOI: 10.18087/cardio.2019.8.n534.
4. Muiesan M.L., Salvetti M., Virdis A., Masi S., Casiglia E., Tikhonoff V. et al. Serum uric acid, predicts heart failure in a large Italian cohort: search for a cut-off value the URic acid Right for heArt Health study. J. Hypertens. 2021;39(1):62–69. DOI: 10.1097/HJH.0000000000002589.
5. Hollstein T., Schlicht K., Krause L., Hagen S., Rohmann N., Schulte D.M. et al. Effect of various weight loss interventions on serum NT-proBNP concentration in severe obese subjects without clinical manifest heart failure. Sci. Rep. 2021;11(1):10096. DOI: 10.1038/s41598-021-89426-7.
6. Joyce E., Lala A., Stevens S.R., Cooper L.B., AbouEzzeddine O.F., Groarke J.D. et al. Heart failure apprentice network. Prevalence, profile, and prognosis of severe obesity in contemporary hospitalized heart failure trial populations. JACC. Heart Failure. 2016;4(12):923–931. DOI: 10.1016/j.jchf.2016.09.013.
7. Picano E., Pellikka P.A. Ultrasound of extravascular lung water: a new standard for pulmonary congestion. Eur. Heart J. 2016;37(27):2097–2104. DOI: 10.1093/eurheartj/ehw164.
8. Donataccio M.P., Vanzo A., Bosello O. Obesity paradox and heart failure. Eat Weight Disord. 2021;26(6):1697–1707. DOI: 10.1007/s40519-020-00982-9.
9. Zhang J., Begley A., Jackson R., Harrison M., Pellicori P., Clark A.L. et al. J. Body mass index and all-cause mortality in heart failure patients with normal and reduced ventricular ejection fraction: a dose-response meta-analysis. Clinical Research in Cardiology: Official Journal of the German Cardiac Society. 2019;108(2):119–132. DOI: 10.1007/s00392-0181302-7.
10. Gupta A., Braunwald E., McNulty S., Felker G.M., Gilbert E.M., Alharethi R. et al. Obesity and the response to intensified diuretic treatment in decompensated heart failure: a DOSE trial substudy. Journal of Cardiac Failure. 2012;18(11):837–844. DOI: 10.1016/j.cardfail.2012.09.005.
11. Marcks N., Aimo A., Januzzi J.L., Jr, Vergaro G., Clerico A., Latini R. et al. Re-appraisal of the obesity paradox in heart failure: a meta-analysis of individual data. Clinical Research in Cardiology: Official Journal of the German Cardiac Society. 2021;110(8):1280–1291. DOI: 10.1007/s00392-02101822-1.
12. Frea S., Pidello S., Volpe A., Canavosio F.G., Galluzzo A., Bovolo V. et al. Diuretic treatment in high-risk acute decompensation of advanced chronic heart failure-bolus intermittent vs. continuous infusion of furosemide: a randomized controlled trial. Clinical Research in Cardiology: Official Journal of the German Cardiac Society. 2020;109(4):17–425. DOI: 10.1007/s00392-019-01521-y.
13. Seko Y., Kato T., Morimoto T., Yaku H., Inuzuka Y., Tamaki Y. et al. Association between body mass index and prognosis of patients hospitalized with heart failure. Scientific Reports. 2020;10(1):16663. DOI: 10.1038/s41598-02073640-w.
14. Pellicori P., Shah P., Cuthbert J., Urbinati A., Zhang J., Kallvikbacka-Bennett A.et al. Prevalence, pattern and clinical relevance of ultrasound indices of congestion in outpatients with heart failure. Eur. J. Heart Fail. 2019;21(7):904–916. DOI: 10.1002/ejhf.1383.
15. Curbelo J., Rodriguez-Cortes P., Aguilera M., Gil-Martinez P., Martín D., Suarez Fernandez C. Comparison between inferior vena cava ultrasound, lung ultrasound, bioelectric impedance analysis, and natriuretic peptides in chronic heart failure. Current Medical Research and Opinion. 2019;35(4):705–713. DOI: 10.1080/03007995.2018.1519502.
16. Pivetta E., Goffi A., Nazerian P., Castagno D., Tozzetti C., Tizzani P. et al. Study Group on Lung Ultrasound from the Molinette and Careggi Hospitals. Lung ultrasound integrated with clinical assessment for the diagnosis of acute decompensated heart failure in the emergency department: a randomized controlled trial. Eur. J. Heart Fail. 2019;21(6):754–766. DOI: 10.1002/ejhf.1379.
17. Platz E., Jhund P.S., Girerd N., Pivetta E., McMurray J., Peacock W.F. et al. Expert consensus document: Reporting checklist for quantification of pulmonary congestion by lung ultrasound in heart failure. European J. Heart Fail. 2019;21(7):844–851. DOI: 10.1002/ejhf.1499.
18. Araiza-Garaygordobil D., Gopar-Nieto R., Martinez-Amezcua P., Cabello-López A., Alanis-Estrada G., Luna-Herbert A. et al. A randomized controlled trial of lung ultrasound-guided therapy in heart failure (CLUSTER-HF study). Am. Heart J. 2020Sept.; 227:31–39. DOI: 10.1016/j.ahj.2020.
Review
For citations:
Kobalava Zh.D., Cabello Montoya F.E., Safarova A.F., Tolkacheva V.V., Abramov A.A. Prognostic value of the inferior vena cava diameter, lung ultrasound, and the NT-proBNP level in patients with acute decompensated heart failure and obesity. Bulletin of Siberian Medicine. 2023;22(1):33-40. https://doi.org/10.20538/1682-0363-2023-1-33-40