Effects of the ACTH6-9-Pro-Gly-Pro peptide on the morphofunctional state of rat colon under conditions of chronic restraint stress
https://doi.org/10.20538/1682-0363-2023-2-14-20
Abstract
Aim. To study the morphofunctional state of the colonic wall in rats when using the N–terminal analog of the adrenocorticotropic hormone (ACTH) ACTH6-9-Pro-Gly-Pro (ACTH6-9-PGP) peptide under chronic stress.
Materials and methods. The study was performed on 55 male Wistar rats, which were divided into 5 groups (n = 11): group 1 – control group (administration of saline solution without stress); group 2 – chronic restraint stress (CRS) + administration of saline solution; group 3 – CRS + administration of ACTH6-9-PGP at a dose of 5 μg / kg; group 4 – administration of ACTH6-9-PGP at a dose of 50 μg / kg; group 5 – administration of ACTH6-9- PGP at a dose of 500 μg / kg. A histologic examination of the rat colon was performed. The histologic architecture of the colonic wall, the depth of crypts, and the number of goblet cells were assessed. Furthermore, the number of granulocytes, plasma cells, lymphocytes, macrophages, and mast cells was counted.
Results. The study demonstrated that chronic (14 days) restraint stress resulted in the development of inflammations in the colonic wall of the animals. Intraperitoneal administration of ACTH6-9-PGP at doses of 50 and 500 μg / kg daily throughout the entire time of stress exposure prevented the development of stress-induced alterations observed in the control animals. At the same time, anti-inflammatory effects of the peptide in the colonic wall and a decrease in the level of corticosterone in the blood serum were noted.
Conclusion. The results of this work and data from other studies on the effects of N-terminal analogs of ACTH indicate the need for studying the mechanisms of their effect on inflammation and searching for targets of ACTH6-9-PGP.
About the Authors
A. O. VorvulRussian Federation
3, K. Marksa Str., Kursk, 305041
I. I. Bobyntsev
Russian Federation
3, K. Marksa Str., Kursk, 305041
E. S. Mishina
Russian Federation
3, K. Marksa Str., Kursk, 305041
O. A. Medvedeva
Russian Federation
3, K. Marksa Str., Kursk, 305041
L. A. Andreeva
Russian Federation
2, Academika Kurchatova Sq., Moscow, 123182
N. F. Myasoedov
Russian Federation
2, Academika Kurchatova Sq., Moscow, 123182
References
1. Catania A. Neuroprotective actions of melanocortins: a therapeutic opportunity. Trends Neurosci. 2008;31(7):353–360. DOI: 10.1016/j.tins.2008.04.002.
2. Yang Y., Hruby V.J., Chen M., Crasto C., Cai M., Harmon C.M. Novel binding motif of ACTH analogues at the melanocortin receptors. Biochemistry. 2009;48(41):9775–9784. DOI: 10.1021/bi900634e.
3. Volodina M.A., Sebentsova E.A., Glazova N.Y., Manchenko D.M., Inozemtseva L.S., Dolotov O.V. et al. Correction of long-lasting negative effects of neonatal isolation in white rats using semax. Acta Naturae. 2012;4(1):86–92.
4. Svishcheva M.V., Mukhina A.Y., Medvedeva O.A., Shevchenko A.V., Bobyntsev I.I., Kalutskii P.V. et al. Composition of colon microbiota in rats treated with ACTH(4-7)-PGP peptide (semax) under conditions of restraint stress. Bull. Exp. Biol. Med. 2020;169(3):357–360. DOI: 10.1007/s10517-020-04886-7.
5. Svishcheva M.V., Mishina Y.S., Medvedeva O.A., Bobyntsev I.I., Mukhina A.Y., Kalutskii P.V. et al. Morphofunctional state of the large intestine in rats under conditions of restraint stress and administration of peptide ACTH(4-7)-PGP (semax). Bull. Exp. Biol. Med. 2021;170(3):384–388. DOI: 10.1007/s10517-021-05072-z.
6. Cryan J.F., O’Riordan K.J., Cowan C.S.M., Sandhu K.V., Bastiaanssen T.F.S., Boehme M. et al. The microbiota-gut-brain axis. Physiol. Rev. 2019;99(4):1877–2013. DOI: 10.1152/physrev.00018.2018.
7. Левицкая Н.Г., Каменский А.А. Меланокортиновая система. Успехи физиологических наук. 2009;40(1):44–65.
8. Додонова С.А., Бобынцев И.И., Белых А.Е., Анфилова М.Г., Андреева Л.А., Мясоедов Н.Ф. Сравнительное исследование антидепрессивной активности N-концевых аналогов адренокортикотропного гормона у крыс. Курский научно-практический вестник «Человек и его здоровье». 2019;(4):83–89. DOI: 10.21626/vestnik/2019-4/10.
9. Левицкая Н.Г., Глазова Н.Ю., Себенцова Е.А., Манченко Д.М., Андреева Л.А., Каменский А.А. и др. Ноотропные и анксиолитические эффекты гептапептида АКТГ6- 9Pro-Gly-Pro. Российский физиологический журнал имени И.М. Сеченова. 2019;105(6):761–770. DOI: 10.1134/S0869813919060049.
10. Dodonova S.A., Bobyntsev I.I., Belykh A.E., Vorvul’ A.O. ACTH6-9-PGP improves memory consolidation processes in rats. Res. Results Pharmacol. 2021;7(1):27–32. DOI: 10.3897/rrpharmacology.7.62479.
11. Dodonova S.A., Bobyntsev I.I., Belykh A.E., Andreeva L.A., Myasoedov N.F. Changes in the nociceptive response to thermal stimulation in rats following administration of N-termi nal analogs of the adrenocorticotropic hormone. Bulletin of RSMU. 2021;(6):33–36. DOI: 10.24075/brsmu.2019.085.
12. Vorvul A.O., Bobyntsev I.I., Medvedeva O.A., Mukhina A.Y., Svishcheva M.V., Azarova I.E. et al. ACTH(6-9)-Pro-Gly-Pro ameliorates anxiety-like and depressive-like behaviour and gut mucosal microbiota composition in rats under conditions of chronic restraint stress. Neuropeptides. 2022;93:102247. DOI: 10.1016/j.npep.2022.102247.
13. Автандилов Г.Г. Проблемы патогенеза и патологоанатомической диагностики болезней в аспектах морфометрии. М.: Медицина, 1984:285.
14. Overman E.L., Rivier J.E., Moeser A.J. CRF induces intestinal epithelial barrier injury via the release of mast cell proteases and TNF-α. PLoS One. 2012;7(6):e39935. DOI: 10.1371/journal.pone.0039935.
15. Santos J., Yang P.C., Söderholm J.D., Benjamin M., Perdue M.H. Role of mast cells in chronic stress induced colonic epithelial barrier dysfunction in the rat. Gut. 2001;48(5):630–636.
16. Santos J., Yates D., Guilarte M., Vicario M., Alonso C., Perdue M.H. Stress neuropeptides evoke epithelial responses via mast cell activation in the rat colon. Psychoneuroendocrinology. 2008;33(9):1248–1256. DOI: 10.1016/j.psyneuen.2008.07.002.
17. Spiezia L., Tormene D., Pesavento R., Salmaso L., Simioni P., Prandoni P. Thrombophilia as a predictor of persistent residual vein thrombosis. Haematologica. 2008;93(3):479–480. DOI: 10.3324/haematol.12205.
18. Хавинсон В.Х. Лекарственные пептидные препараты: прошлое, настоящее, будущее. Клиническая медицина. 2020;98(3):165–167. DOI: 10.30629/0023-2149-2020-98-3-165-177.
19. Shevchenko K.V., Nagaev I.Y., Babakov V.N., Andreeva L.A., Shevchenko V.P., Radilov A.S. et al. Proteolysis of His-PheArg-Trp-Pro-Gly-Pro in the blood and brain of rats in vivo. Dokl. Biochem. Biophys. 2015;464:301–304. DOI: 10.1134/S1607672915050087.
20. Hosoi T., Okuma Y., Nomura Y. Electrical stimulation of afferent vagus nerve induces IL-1beta expression in the brain and activates HPA axis. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2000;279(1):R141–R147. DOI: 10.1152/ajpregu.2000.279.1.R141.
21. Adachi S., Nakano T., Vliagoftis H., Metcalfe D.D. Receptor-mediated modulation of murine mast cell function by alpha-melanocyte stimulating hormone. J. Immunol. 1999;163(6):3363–3368.
22. Рогозинская Э.Я., Григорьева М.Е., Ляпина Л.А. Аргининсодержащие пептиды и их влияние на параметры системы гемостаза в норме у крыс. Тромбоз, гемостаз и реология. 2019;(2):31–36. DOI: 10.25555/THR.2019.2.0877.
23. Lyapina L.A., Grigor’eva M.E., Andreeva L.A., Myasoedov N.F. Protective antithrombotic effects of proline-containing peptides under the influence of stress on the animal organism. Biol. Bull. Russ. Acad. Sci. 2010;37:392–396. DOI: 10.1134/S1062359010040096.
Review
For citations:
Vorvul A.O., Bobyntsev I.I., Mishina E.S., Medvedeva O.A., Andreeva L.A., Myasoedov N.F. Effects of the ACTH6-9-Pro-Gly-Pro peptide on the morphofunctional state of rat colon under conditions of chronic restraint stress. Bulletin of Siberian Medicine. 2023;22(2):14-20. https://doi.org/10.20538/1682-0363-2023-2-14-20