Prognostic value of humoral markers in patients with anthracycline-related cardiac dysfunction
https://doi.org/10.20538/1682-0363-2023-3-25-35
Abstract
Aim. To carry out a 12-month study on the prognostic role of humoral markers responsible for the main mechanisms of initiation of cardiotoxic myocardial damage (endothelin-1, soluble Fas-L, N-terminal pro-brain natriuretic peptide (NT-proBNP), tumor necrosis factor-α, interleukin (IL)-1β, matrix metalloproteinase (MMP)-2 and MMP9, soluble form of the ST2 protein (sST2), a tissue inhibitor of metalloproteinase-1, and tetranectin) in assessing the risk of progression of anthracycline-related left ventricular dysfunction.
Materials and methods. The study included a total of 114 women aged 48.0 (46.0; 52.0) years without concomitant cardiovascular diseases and risk factors who received chemotherapy with anthracyclines in the past. The levels of serum biomarkers were determined using the enzyme immunoassay. Transthoracic echocardiography was performed at baseline and at 12 months of follow-up.
Results. After 12 months of follow-up, all patients were retrospectively divided into 2 groups: group 1 (n = 54) included patients with an unfavorable course of anthracycline-related cardiac dysfunction (ARCD), group 2 (n = 60) encompassed patients with a favorable course of the disease. According to the ROC analysis, MMP-2 ≥ ≥ 338.8 pg / ml (sensitivity 57%, specificity 78%; AUC = 0.629; p = 0.025), MMP-9 ≥ 22.18 pg / ml (sensitivity 89%, specificity 87%; AUC = 0.886; p < 0.001), sST2 ≥ 32.4 ng / ml (sensitivity 64%, specificity 70.5%; AUC = 0.691; p = 0.002), and tetranectin ≤ 15.4 pg / ml (sensitivity 69%, specificity 72%; AUC = 0.764; p < 0.001) were identified as predictors of an adverse course of ARCD. When comparing ROC curves, it was found that the concentration of MMP-9 (p = 0.002) was the most significant predictor of the progression of ARCD.
Conclusion. MMP-2 and -9, soluble ST2, and tetranectin can be considered as non-invasive markers for assessing the risk of ARCD progression. At the same time, an increased level of MMP-9 is the most significant predictor of ARCD progression.
About the Authors
E. V. GrakovaRussian Federation
111а, Kievskaya Str., Tomsk, 634012
K. V. Kopeva
Russian Federation
111а, Kievskaya Str., Tomsk, 634012
S. N. Shilov
Russian Federation
52, Krasny Av., Novosibirsk, 630091
E. T. Bobyleva
Russian Federation
52, Krasny Av., Novosibirsk, 630091
E. N. Berezikova
Russian Federation
52, Krasny Av., Novosibirsk, 630091
V. V. Kalyuzhin
Russian Federation
2, Moscow Trakt, Tomsk, 634050
A. T. Teplyakov
Russian Federation
111а, Kievskaya Str., Tomsk, 634012
References
1. Adhikari A., Asdaq S.M.B., Al Hawaj M.A., Chakraborty M., Thapa G., Bhuyan N.R. et al. Anticancer drug-induced cardiotoxicity: insightsand pharmacogenetics. Pharmaceuticals (Basel). 2021;14(10):970. DOI: 10.3390/ph14100970.
2. Saleh Y., Abdelkarim O., Herzallah K., Abela G.S. Anthracycline-induced cardiotoxicity: mechanisms of action, incidence, risk factors, prevention, and treatment. Heart Fail Rev. 2021;26(5):1159–1173. DOI: 10.1007/s10741-020-09968-2.
3. Curigliano G., Cardinale D., Dent S., Criscitiello C., Aseyev O., Lenihan D. et al. Cardiotoxicity of anticancer treatments: epidemiology, detection, and management. CA Cancer J. Clin. 2016;66(4):309–325. DOI: 10.3322/caac.21341.
4. Zamorano J.L., Lancellotti P., Rodriguez Munoz D., Aboyans V., Asteggiano R., Galderisi M. et al. ESC Scientific Document Group. 2016 ESC Position Paper on cancer treatments and cardiovascular toxicity developed under the auspices of the ESC committee for practice guidelines: the task force for cancer treatments and cardiovascular toxicity of the European Society of Cardiology. Eur. J. Heart Fail. 2017;19(1):9–42. DOI: 10.1002/ejhf.654.
5. Lakhani H.V., Pillai S.S., Zehra M., Dao B., Tirona M.T., Thompson E. et al. Detecting early onset of anthracyclines-induced cardiotoxicity using a novel panel of biomarkers in West-Virginian population with breast cancer. Sci. Rep. 2021;11(1):7954. DOI: 10.1038/s41598-021-87209-8.
6. Mitry M.A., Edwards J.G. Doxorubicin induced heart failure: phenotype and molecular mechanisms. Int. J. Cardiol. Heart Vasc. 2016;10:17–24. DOI: 10.1016/j.ijcha.2015.11.004.
7. Fabiani I., Aimo A., Grigoratos C., Castiglione V., Gentile F., Saccaro L.F. et al. Oxidative stress and inflammation: determinants of anthracycline cardiotoxicity and possible therapeutic targets. Heart Fail Rev. 2021;26(4):881–890. DOI: 10.1007/s10741-020-10063-9.
8. Bansal N., Adams M.J., Ganatra S., Colan S.D., Aggarwal S., Steiner R. et al. Strategies to prevent anthracycline-induced cardiotoxicity in cancer survivors. Cardio-Oncology. 2019;5:1– 22. DOI: 10.1186/s40959-019-0054-5.
9. Songbo M., Lang H., Xinyong C., Bin X., Ping Z., Liang S. Oxidative stress injury in doxorubicin-induced cardiotoxicity. Toxicol. Lett. 2019;307:41–48. DOI: 10.1016/j.toxlet.2019.02.013.
10. Aminkeng F., Ross C.J., Rassekh S.R., Hwang S., Rieder M.J., Bhavsar A.P. et al. CPNDS Clinical Practice Recommendations Group. Recommendations for genetic testing to reduce the incidence of anthracycline-induced cardiotoxicity. Br. J. Clin. Pharmacol. 2016;82(3):683–695. DOI: 10.1111/bcp.13008.
11. Lyon A.R., López-Fernández T., Couch L.S., Asteggiano R., Aznar M.C., Bergler-Klein J. et al. ESC Scientific Document Group. 2022 ESC Guidelines on cardio-oncology developed in collaboration with the European Hematology Association (EHA), the European Society for Therapeutic Radiology and Oncology (ESTRO) and the International Cardio-Oncology Society (IC-OS). Eur. Heart J. 20221;43(41):4229–4361. DOI: 10.1093/eurheartj/ehac244.
12. Capranico G., Tinelli S., Austin C.A., Fisher M.L., Zunino F. Different patterns of gene expression of topoisomerase 2 isoforms in differentiated tissues during murine development. Biochim. Biophys. Acta. 1992;1132(1):43–48. DOI: 10.1016/0167-4781(92)90050-A.
13. Grakova E.V., Shilov S.N., Kopeva K.V., Berezikova E.N., Popova A.A., Neupokoeva M.N. et al. Extracellular matrix remodeling in anthracycline-induced cardiotoxicity: What place on the pedestal? Int. J. Cardiol. 2022;350:55–61. DOI: 10.1016/j.ijcard.2022.01.013.
14. Adamcová M., Potáčová A., Popelová O. et al. Cardiac remodeling and MMPs on the model of chronic daunorubicin-induced cardiomyopathy in rabbits. Physiol. Res. 2010;59(5):831–836. DOI: 10.33549/physiolres.931797.
15. Saleh Y., Abdelkarim O., Herzallah K. Abela G.S. Anthracycline-induced cardiotoxicity: mechanisms of action, incidence, risk factors, prevention, and treatment. Heart Fail Rev. 2021;26(5):1159–1173. DOI: 10.1007/s10741-020-09968-2.
16. Leerink J.M., van de Ruit M., Feijen E.A.M. et al. Extracellular matrix remodeling in animal models of anthracycline-induced cardiomyopathy: a meta-analysis. J. Mol. Med. (Berlin). 2021;99(9):1195–1207. DOI: 10.1007/s00109-021-02098-8.
17. Octavia Y., Tocchetti C.G., Gabrielson K.L., Janssens S., Crijns H.J., Moens A.L. Doxorubicin-induced cardiomyopathy: from molecular mechanisms to therapeutic strategies. J. Mol. Cell Cardiol. 2012;52(6):1213–1225. DOI: 10.1016/j.yjmcc.2012.03.006.
18. Vanhoutte D., Heymans S. TIMPs and cardiac remodeling: ‘embracing the MMP-independent-side of the family’. J. Mol. Cell Cardiol. 2010;48(3):445–453. DOI: 10.1016/j.yjmcc.2009.09.013.
19. Schulz R. Intracellular targets of matrix metalloproteinase-2 in cardiac disease: rationale and therapeutic approaches. Annu. Rev. Pharmacol. Toxicol. 2007;47:211–242. DOI: 10.1146/annurev.pharmtox.47.120505.105230.
20. Chan B.Y.H., Roczkowsky A., Cho W.J., Poirier M., Sergi C., Keschrumrus V. et al. MMP inhibitors attenuate doxorubicin cardiotoxicity by preventing intracellular and extracellular matrix remodeling. Cardiovasc. Res. 2021;117(1):188–200. DOI: 10.1093/cvr/cvaa017.
21. Fanjul-Fernández M., Folgueras A.R., Cabrera S., LópezOtín C. Matrix metalloproteinases: Evolution, gene regulation and functional analysis in mouse models. Biochimica et Biophysica Acta (BBA) – Molecular Cell Research. 2010;1803(1):3–19. DOI: 10.1016/j.bbamcr.2009.07.004.
22. Alfonso-Jaume M.A., Bergman M.R., Mahimkar R., Cheng S., Jin Z.Q., Karliner J.S. et al. Cardiac ischemia-reperfusion injury induces matrix metalloproteinase-2 expression through the AP-1 components FosB and JunB. Am. J. Physiol. Heart Circ. Physiol. 2006;291(4):H1838–H1846. DOI: 10.1152/ajpheart.00026.2006.
23. Chan B.Y.H., Roczkowsky A., Moser N., Poirier M., Hughes B.G., Ilarraza R. et al. Doxorubicin induces de novo expression of N-terminal-truncated matrix metalloproteinase-2 in cardiac myocytes. Can. J. Physiol. Pharmacol. 2018;96(12):1238–1245. DOI: 10.1139/cjpp-2018-0275.
24. Spinale F.G., Janicki J.S., Zile M.R. Membrane-associated matrix proteolysis and heart failure. Circ. Res. 2013;112(1):195– 208. DOI: 10.1161/CIRCRESAHA.112.266882.
25. Ivanová M., Dovinová I., Okruhlicová L., Tribulová N., Simončíková P., Barteková M. et al. Chronic cardiotoxicity of doxorubicin involves activation of myocardial and circulating matrix metalloproteinases in rats. Acta Pharmacol. Sin. 2012;33(4):459–469. DOI: 10.1038/aps.2011.194.
26. Toro-Salazar O.H., Lee J.H., Zellars K.N., Perreault P.E., Mason K.C., Wang Z. et al. Use of integrated imaging and serum biomarker profiles to identify subclinical dysfunction in pediatric cancer patients treated with anthracyclines. Cardiooncology. 2018;4:4. DOI: 10.1186/s40959-018-0030-5.
27. Wewer U.M., Ibaraki K., Schjørring P., Durkin M.E., Young M.F., Albrechtsen R. A potential role for tetranectin in mineralization during osteogenesis. J. Cell Biol. 1994;127(6Pt1):1767–1775. DOI: 10.1083/jcb.127.6.1767.
28. Nielsen H., Clemmensen I., Kharazmi A. Tetranectin: a novel secretory protein from human monocytes. Scand. J. Immunol. 1993;37(1):39–42. DOI: 10.1111/j.1365-3083.1993.tb01662.x.
29. Christensen L., Clemmensen I. Tetranectin immunoreactivity in normal human tissues. An immunohistochemical study of exocrine epithelia and mesenchyme. Histochemistry. 1989;92(1):29–35. DOI: 10.1007/BF00495012.
30. Ho J.E., Lyass A., Courchesne P., Chen G., Liu C., Yin X. et al. Protein biomarkers of cardiovascular disease and mortality in the community. J. Am. Heart Assoc. 2018;13;7(14):e008108. DOI: 10.1161/JAHA.117.008108.
31. Mogues T., Etzerodt M., Hall C., Engelich G., Graversen J.H., Hartshorn K.L. Tetranectin binds to the kringle 1-4 form of angiostatin and modifies its functional activity. J. Biomed. Biotechnol. 2004;2004(2):73–78. DOI: 10.1155/S1110724304307096.
32. McDonald K., Glezeva N., Collier P. Tetranectin, a potential novel diagnostic biomarker of heart failure, is expressed within the myocardium and associates with cardiac fibrosis. Sci. Rep. 2020;10(1):7507. DOI: 10.1038/s41598-020-64558-4.
33. Iba K., Hatakeyama N., Kojima T., Murata M., Matsumura T., Wewer U.M. et al. Impaired cutaneous wound healing in mice lacking tetranectin. Wound Repair Regen. 2009;17(1):108– 112. DOI: 10.1111/j.1524-475X.2008.00447.x.
34. Chen Y., Han H., Yan X., Ding F., Su X., Wang H. et al. Tetranectin as a potential biomarker for stable coronary artery disease. Sci. Rep. 2015;5:17632. DOI: 10.1038/srep17632.
35. Копьева К.В., Тепляков А.Т., Гракова Е.В., Солдатенко М.В., Огуркова О.Н., Ахмедов Ш.Д. Роль нового биомаркераST2 в оценке ремоделирования миокарда у больных хронической сердечной недостаточностью ишемического генеза с сохраненной фракцией выброса левого желудочка. Кардиология. 2018;58(10S):33–43. DOI: 10.18087/cardio.2498.
36. Garbern J.C., Williams J., Kristl A.C., Malick A., Rachmin I., Gaeta B. et al. Dysregulation of IL-33/ST2 signaling and myocardial periarteriolar fibrosis. J. Mol. Cell Cardiol. 2019;128:179–186. DOI: 10.1016/j.yjmcc.2019.01.018.
37. Останко В.Л., Калачева Т.П., Калюжина Е.В., Лившиц И.К., Шаловай А.А., Черногорюк Г.Э. и др. Биологические маркеры в стратификации риска развития и прогрессирования сердечно-сосудистой патологии: настоящее и будущее. Бюллетень сибирской медицины. 2018;17(4):264−280. DOI: 10.20538/1682-0363-2018-4-264-280.
Review
For citations:
Grakova E.V., Kopeva K.V., Shilov S.N., Bobyleva E.T., Berezikova E.N., Kalyuzhin V.V., Teplyakov A.T. Prognostic value of humoral markers in patients with anthracycline-related cardiac dysfunction. Bulletin of Siberian Medicine. 2023;22(3):25-35. https://doi.org/10.20538/1682-0363-2023-3-25-35