Preview

Bulletin of Siberian Medicine

Advanced search

Constitutional risk factors for the development of glaucoma and cataracts in the Europioid population of Russia

https://doi.org/10.20538/1682-0363-2023-3-43-53

Abstract

Aim. To identify endogenous risk factors for the development of glaucoma and cataracts based on the results of a comparative analysis of the nature of complex genetic trait distribution, including variants of genes for a number of cytokines and receptors for them, metalloproteinases, and their tissue inhibitors included in the genome of patients.

Materials and methods. The study included 501 people of the Caucasian race born and living in the Siberian region of Russia. They were divided into three groups of patients – patients with primary open-angle glaucoma (POAG) (n = 99), patients with senile cataract (n = 100), and the control group (n = 302) without ophthalmic pathology. Genotyping of the analyzed polymorphic loci was carried out by real-time PCR using the SYBRGreen I dye and TaqMan probes and by restriction fragment length polymorphism (RFLP) for different polymorphisms.

Results. The results of the study on the frequency of the analyzed genetic traits among patients with POAG compared to the control group showed the presence of combined genetic traits. The frequency of their detection in POAG was high and characterized by the two-digit value of the odds ratio, high values of specificity (99–100%), and high diagnostic coefficient. A direct comparison of the distribution of two ensembles of genes which protein products are involved in the extracellular matrix remodeling revealed a significant number of genetic traits characteristic of both diseases. This indicates significant differences in the implementation of the genetic predisposition to their development.

Conclusion. The data obtained indicate the possibility of developing reliable laboratory criteria (riskometers) for predicting predisposition to the development of POAG and early diagnosis at the stage of preclinical manifestations.

About the Authors

V. I. Konenkov
Research Institute of Clinical and Experimental Lymphology – a branch of the Federal Research Center “Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences”
Russian Federation

2, Timakova Str., Novosibirsk, 630060



A. V. Shevchenko
Research Institute of Clinical and Experimental Lymphology – a branch of the Federal Research Center “Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences”
Russian Federation

2, Timakova Str., Novosibirsk, 630060



V. F. Prokofiev
Research Institute of Clinical and Experimental Lymphology – a branch of the Federal Research Center “Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences”
Russian Federation

2, Timakova Str., Novosibirsk, 630060



A. N. Trunov
S. Fyodorov Eye Microsurgery Federal State Institution, Novosibirsk branch
Russian Federation

10, Kolkhidskaya Str., Novosibirsk, 630096



V. V. Chernykh
S. Fyodorov Eye Microsurgery Federal State Institution, Novosibirsk branch
Russian Federation

10, Kolkhidskaya Str., Novosibirsk, 630096



References

1. Urbanczyk M., Layland Sh., Schenke-Layland K. The role of extracellular matrix in biomechanics and its impact on bioengineering of cells and 3D tissues. Matrix Biol. 2020;85–86:1–14. DOI: 10.1016/j.matbio.2019.11.005.

2. Petridou N.I., Spiró Z., Heisenberg C.-P. Multiscale force sensing in development. Nat. Cell Biol. 2017;19(6):581–588. DOI: 10.1038/ncb3524.

3. Keller K., Peters D. Pathogenesis of glaucoma: Extracellular matrix dysfunction in the trabecular meshwork – A review. Clin. Exp. Ophthalmol. 2022;50(2):163–182. DOI: 10.1111/ceo.14027.

4. Pouw A., Greiner M., Coussa R., Jiao C., Han I., Skeie J. et al. Cell-matrix interactions in the eye: from cornea to choroid. Cells. 2021;10(3):687. DOI: 10.3390/cells10030687.

5. Коненков В.И., Шевченко А.В., Прокофьев В.Ф., Климонтов В.В., Черных Д.В., Черных В.В. и др. Персонализированный иммуногенетический прогноз предрасположенности человека к офтальмопатологии различного генеза Сибирский научный медицинский журнал. 2019;39(3):6–14. DOI: 10.15372/SSMJ20190301.

6. Lu Y., Zhou D., Lu H., Xu F., Yue J., Tong J. et al. Investigating a downstream gene of Gpnmb using the systems genetics method. Mol. Vis. 2019;25:222–236.

7. Вейр Б. Анализ генетических данных. Дискретные генетические признаки; пер. с англ. М.: Мир, 1995:400.

8. Гублер Е.В. Вычислительные методы анализа и распознавания патологических процессов. М.: Медицина, 1983:296.

9. Юнкеров В.И., Григорьев С.Г. Математико-статистическая обработка данных медицинских исследований. СПб.: ВМедА, 2002:266.

10. Наркевич А.Н., Виноградов К.А., Гржибовский А.М. Множественные сравнения в биомедицинских исследованиях: проблема и способы решения. Экология человека. 2020;10:55–64. DOI: 10.33396/1728-0869-2020-10-55-64.

11. Andia D., Letra A., Casarin R., Casati M., Line S., Souza A. Genetic analysis of the IL8 gene polymorphism (rs4073) in generalized aggressive periodontitis. Arch. Oral Biol. 2013;58(2):211–217. DOI: 10.1016/j.archoralbio.2012.05.008.

12. Lorente L., Martín M., Plasencia F., Solé-Violán J., Blanquer J., Labarta L. et al. The 372 T/C genetic polymorphism of TIMP-1 is associated with serum levels of TIMP-1 and survival in patients with severe sepsis. Crit Care. 2013;17(3):94. DOI: 10.1186/cc12739.

13. Alp E., Yilmaz A., Tulmac M., Ugras Dikmen A., Cengel A., Yalcin R. et al. Analysis of MMP-7 and TIMP-2 gene polymorphisms in coronary artery disease and myocardial infarction: A Turkish case-control study. Kaohsiung. J. Med. Sci. 2017;33(2):78–85. DOI: 10.1016/j.kjms.2016.12.002.

14. Abd-Allah S., Shalaby S., Pasha H., El-Shal A., Abou ElSaoud A. Variation of matrix metalloproteinase 1 and 3 haplotypes and their serum levels in patients with rheumatoid arthritis and osteoarthritis. Genet. Test Mol. Biomarkers. 2012;16(1):15–20. DOI: 10.1089/gtmb.2011.0003.

15. Zhang L., Wu G., Herrle F., Niedergethmann M., Keese M. Single nucleotide polymorphisms of genes for EGF, TGF-β and TNF-α in patients with pancreatic carcinoma. Cancer Genomics Proteomics. 2012;9(5):287–295.

16. Bayat A., Stanley J., Watson J., Ferguson M., Ollier W. Genetic susceptibility to Dupuytren’s disease: transforming growth factor beta receptor (TGFbetaR) gene polymorphisms and Dupuytren’s disease. Br. J. Plast. Surg. 2003;56(4):328–333. DOI: 10.1016/s0007-1226(03)00176-0.

17. Armstrong R.A. When to use the Bonferroni correction оphthalmic. Physiol Opt. 2014;34(5):502–508. DOI: 10.1111/opo.12131.

18. Velkovska M.A., Goričar K., Blagus T., Dolžan V., Cvenkel B. Association of genetic polymorphisms in oxidative stress and inflammation pathways with glaucoma risk and phenotype. J. Clin. Med. 2021;10(5):1148. DOI: 10.3390/jcm10051148.

19. Belmares R., Raychaudhuri U., Maansson S., Clark A.F. Histological investigation of human glaucomatous eyes: Extracellular fibrotic changes and galectin 3 expression in the trabecular meshwork and optic nerve head. Clin. Anat. 2018;31(7):1031–1049. DOI: 10.1002/ca.23263.

20. Черных В.В., Коненков В.И., Орлов Н.Б., Ермакова О.В., Ходжаев Н.С., Трунов А.Н. Особенности содержания трансформирующих факторов роста – бета 1, 2, 3 (TGF-бета1, TGF-бета2, TGF-бета3) во внутриглазной жидкости при первичной открытоугольной глаукоме. Офтальмохирургия. 2019;2:13–17. DOI: 10.25276/0235-4160-2019-2-13-17.

21. Rezaei N., Aghamohammadi A., Mahmoudi M., Shakiba Y., Kardar G., Mahmoudi M. et al. Association of IL-4 and IL10 gene promoter polymorphisms with common variable immunodeficiency. Immunobiology. 2010;215(1):81–87. DOI: 10.1016/j.imbio.2009.01.011.

22. Bestach Y., Nagore V., Flores M., González J., Arbelbide J., Watman N. et al. Influence of TNF and IL6 gene polymorphisms on the severity of cytopenias in Argentine patients with myelodysplastic syndromes. Ann. Hematol. 2017;96(8):1287– 1295. DOI: 10.1007/s00277-017-3036-4.

23. Кириллова М., Журавлева А., Марахонов А., Петрова Н., Балинова Н., Зинченко Р. и др. Полиморфизмы генов, связанных с ремоделированием соединительной ткани, как маркеры доклинической диагностики первичной открытоугольной глаукомы у пациентов с наследственной предрасположенностью. Медицинская генетика 2021;20(5):26–33. DOI: 10.25557/2073-7998.2021.05.26-33.

24. Ji M.-L., Jia J. Correlations of TIMP2 and TIMP3 gene polymorphisms with primary open-angle glaucoma. Eur. Rev. Med. Pharmacol. Sci. 2019;23(13):5542–5547. DOI: 10.26355/eurrev_201907_18287.

25. Markiewicz L., Majsterek I., Przybylowska K., Dziki L., Waszczyk M., Gacek M. et al. Gene polymorphisms of the MMP1, MMP9, MMP12, IL-1β and TIMP1 and the risk of primary open-angle glaucoma. Acta Ophthalmol. 2013;91(7):e516–523. DOI: 10.1111/aos.12149.

26. Xin X., Gao L., Wu T. Roles of tumor necrosis factor alpha gene polymorphisms, tumor necrosis factor alpha level in aqueous humor, and the risks of open angle glaucoma: A meta-analysis. Mol. Vis. 2013;19:526–535.


Review

For citations:


Konenkov V.I., Shevchenko A.V., Prokofiev V.F., Trunov A.N., Chernykh V.V. Constitutional risk factors for the development of glaucoma and cataracts in the Europioid population of Russia. Bulletin of Siberian Medicine. 2023;22(3):43-53. https://doi.org/10.20538/1682-0363-2023-3-43-53

Views: 311


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1682-0363 (Print)
ISSN 1819-3684 (Online)