Диабетический кетоацидоз и когнитивные нарушения у детей и подростков
https://doi.org/10.20538/1682-0363-2023-3-132-140
Аннотация
Цель исследования – освещение современных научных источников по вопросам формирования и клиническим проявлениям когнитивных нарушений у детей и подростков с сахарным диабетом (СД) 1-го типа после перенесенного диабетического кетоацидоза (ДКА). СД 1-го типа является одним из распространенных эндокринных заболеваний в детском и подростковом возрасте. ДКА – наиболее частое острое осложнение СД 1-го типа, который может вызывать когнитивные нарушения. Отек головного мозга при ДКА является основной причиной, приводящей к церебральной недостаточности. Механизмы формирования когнитивной дисфункции при ДКА полностью не выяснены.
Ведущими гипотезами являются: возникновение нейровоспаления, оксидативный стресс, нарушение процессов нейрогенеза и нейродегенерация. Гипоксически-ишемические нарушения и изменения в нейроанатомии головного мозга также могут являться причинами когнитивной дисфункции. Отмечено нарушение некоторых структур головного мозга после ДКА, в первую очередь белого вещества. Клинические исследования, проведенные в педиатрической популяции, подтверждают корреляцию между тяжестью и частотой ДКА и выраженностью когнитивных нарушений. Когнитивная дисфункция у детей и подростков после ДКА может проявляться в снижении внимания, нарушении памяти и исполнительной функции, а также в низком уровне IQ. Максимально ранняя диагностика когнитивных нарушений в педиатрической практике при СД 1-го типа с проявлениями ДКА может улучшить терапевтический прогноз при лечении данной эндокринопатии.
Об авторах
К. Ш. МагомедоваРоссия
Магомедова Камила Шамхаловна – врач-терапевт
357930, Ставропольский край, Степновский район, с. Степное, ул. Додонова, 52а
Ю. В. Быков
Россия
Быков Юрий Витальевич – кандидат медицинских наук, ассистент, кафедра анестезиологии и реаниматологии с курсом ДПО, СтГМУ; Детская городская клиническая больница им. Г.К. Филиппского
355017, г. Ставрополь, ул. Мира, 310,
355002, г. Ставрополь, ул. Пономарева, 5
В. А. Батурин
Россия
Батурин Владимир Александрович – доктор медицинских наук, профессор, кафедра клинической фармакологии с курсом ДПО
355017, г. Ставрополь, ул. Мира, 310
Список литературы
1. Ji X., Wang Y., Saylor J. Sleep and Type 1 Diabetes Mellitus Management Among Children, Adolescents, and Emerging Young Adults: A Systematic Review. J. Pediatr. Nurs. 2021;61:245–253. DOI: 10.1016/j.pedn.2021.06.010.
2. Bhutta Z.A., Salam R.A., Gomber A., Lewis-Watts L., Narang T., Mbanya J.C. et al. A century past the discovery of insulin: global progress and challenges for type 1 diabetes among children and adolescents in low-income and middle-income countries. Lancet. 2021;398(10313):1837–1850. DOI: 10.1016/S0140-6736(21)02247-9.
3. Pourabbasi A., Tehrani-Doost M., Ebrahimi Qavam S., Larijani B. Evaluation of the correlation between type 1 diabetes and cognitive function in children and adolescents,and comparison of this correlation with structural changes in the central nervous system: a study protocol. BMJ Open. 2016;6(4):e007917. DOI: 10.1136/bmjopen-2015-007917.
4. Szmygel Ł., Kosiak W., Zorena K., Myśliwiec M. Optic nerve and cerebral edema in the course of diabetic cetoacidosis. Curr. Neuropharmacol. 2016;14(8):784–791. DOI: 10.2174/1570159x14666160225155151.
5. Frontino G., Di Tonno R., Castorani V., Rigamonti A., Morotti E., Sandullo F. et al. Non-Occlusive mesenteric ischemia in children with diabetic ketoacidosis: case report and review of literature. Front. Endocrinol. (Lausanne). 2022;13:900325. DOI: 10.3389/fendo.2022.900325.
6. Wolfsdorf J.I., Allgrove J., Craig M.E., Edge J., Glaser N., Jain V. et al. Diabetic ketoacidosis and hyper-glycemic hypersmolar state ISPAD Clinical Practice Consensus Guidelines 2014. Pediatr. Diabetes. 2014;15(20):154–179. DOI: 10.1111/pedi.12165.
7. Unal E., Pirinccioglu A.G., Yanmaz S.Y., Yılmaz K., Taşkesen M., Haspolat Y.K. A different perspective of elevated lactate in pediatric patients with diabetic ketoacidosis. Acta. Endocrinol. (Buchar.). 2020;16(1):114–117. DOI: 10.4183/aeb.2020.114.
8. Dabelea D., Rewers A., Stafford J.M., Standiford D.A., Lawrence J.M., Saydah S. et al. Trends in the prevalence of ketoacidosis at diabetes diagnosis: the SEARCH for Diabetes in Youth Study. Pediatrics. 2014;133(4):e938–945. DOI: 10.1542/peds.2013-2795.
9. Jessup A.B., Grimley M.B., Meyer E., Passmore G.P., Belger A., Hoffman W.H. Effects of diabetic ketoacidosis on visual and verbal neurocognitive function in young patients presenting with new-onset type 1 diabetes. J. Clin. Res. Pediatr. Endocrinol. 2015;7(3):203–210. DOI: 10.4274/jcrpe.2158.
10. Al-Zubeidi H., Leon-Chi L., Newfield R.S. Low vitamin D level in pediatric patients with new onset Type 1 diabetes is common, especially if in ketoacidosis. Pediatr. Diabetes. 2016;17(8):592–598. DOI: 111/pedi.12342.
11. Hong J., Jalaludin M.Y., Mohamad Adam B., Fuziah M.Z., Wu L.L., Rasat R. et al. Affiliations expand. Diabetic ketoacidosis at diagnosis of type 1 diabetes mellitus in Malaysian children and adolescents. Malays. Fam. Physician. 2015;10(3):11–18.
12. Usher-Smith J.A., Thompson M.J., Sharp S.J, Walter F.M. Factors associated with the presence of diabetic ketoacidosis at diagnosis of diabetes in children and young adults: a systematic review. BMJ. 2011;343:d4092. DOI: 10.1136/bmj.d4092.
13. Li W., Huang E., Gao S. Type 1 Diabetes Mellitus and Cognitive Impairments: A Systematic Review. J. Alzheimers Dis. 2017;57(1):29–36. DOI: 10.3233/JAD-161250.
14. Jayashree M., Singhi S. Diabetic ketoacidosis: predictors of outcome in a pediatric intensive care unit of a developing country. Pediatr. Crit. Care Med. 2004;5(5):427–433. DOI: 10.1097/01.PCC.0000137987.74235.5E.
15. Benoit S.R., Zhang Y., Geiss L.S., Gregg E.W., Albright A. Trends in diabetic ketoacidosis hospitalizations and in-hospital mortality – United States, 2000–2014. MMWR Morb. Mortal. Wkly Rep. 2018;67(12):362–365. DOI: 10.15585/mmwr.mm6712a3.
16. DiLiberti J.H., Lorenz R.A. Long-term trends in childhood diabetes mortality: 1968–1998. Diabetes Care. 2001;24(8):1348– 1352. DOI: 10.2337/diacare.24.8.1348.
17. Wolfsdorf J., Craig M.E., Daneman D., Dunger D., Edge J., Lee W. et al. Diabetic ketoacidosis in children and adolescents with diabetes. Pediatr. Diabetes. 2009;10(12):118–133. DOI: 10.1111/j.1399-5448.2009.00569.x.
18. Bialo S.R., Agrawal S., Boney C.M., Quintos J.B. Rare complications of pediatric diabetic ketoacidosis. World J. Diabetes. 2015;6(1):167–174. DOI: 10.4239/wjd.v6.i1.167.
19. Wootton-Gorges S.L., Buonocore M.H., Kuppermann N., Marcin J.P., Barnes P.D., Neely E.K. et al. Cerebral proton magnetic resonance spectroscopy in children with diabetic ketoacidosis. AJNR Am. J. Neuroradiol. 2007;28(5):895–899.
20. Bowden S.A., Duck M.M., Hoffman R.P. Young children (12 yr) with type 1 diabetes mellitus have low rate of partial remission: diabetic ketoacidosis is an important risk factor. Pediatr. Diabetes. 2008;9(3):197–201. DOI: 10.1111/j.1399-5448.2008.00376.x
21. Abdul-Rasoul M., Habib H., Al-Khouly M. “The honeymoon phase” in children with type 1 diabetes mellitus: frequency, duration, and influential factors. Pediatr. Diabetes. 2006;7(2):101– 107. DOI: 10.1111/j.1399-543X.2006.00155.x.
22. Duca L.M., Reboussin B.A., Pihoker C., Imperatore G., Saydah S., Mayer-Davis E. et al. Diabetic ketoacidosis at diagnosis of type 1 diabetes and glycemic control over time: The SEARCH for diabetes in youth study. Pediatr. Diabetes. 2019;20(2):172–179. DOI: 10.1111/pedi.12809.
23. Glaser N., Anderson S., Leong W., Tancredi D., O’Donnell M. Cognitive dysfunction associated with diabetic ketoacidosis in rats. Neurosci. Lett. 2012;510(2):110–114. DOI: 10.1016/j.neulet.2012.01.014.
24. Glaser N., Barnett P., McCaslin I., Nelson D., Trainor J., Louie J. et al. Risk factors for cerebral edema in children with diabetic ketoacidosis. N. Engl. J. Med. 2001;344(4):264–269. DOI: 10.1056/NEJM200101253440404.
25. Edge J., Hawkins M., Winter D., Dunger D. The risk and outcome of cerebral oedema developing during diabetic ketoacidosis. Arch. Dis. Child. 2001;85(1):16–22. DOI: 10.1136/adc.85.1.16.
26. González Pannia P., Balboa R., Navarro R., Nocita M.F., Ferraro M., Mannucci C. Prevalence of cerebral edema among diabetic ketoacidosis patients. [Article in English, Spanish]. Arch. Argent Pediatr. 2020;118(5):332–336. DOI: 10.5546/aap.2020.eng.332.
27. Glaser N., Gorges S., Marcin J., Buonocore M., DiCarlo J., Neely E. et al. Mechanism of cerebral edema in children with diabetic ketoacidosis. J. Pediatr. 2004;145(2):164–171. DOI: 10.1016/j.jpeds.2004.03.045.
28. Glaser N., Wooton-Gorges S., Buonocore M., Marcin J., Rewers A., Strain J., DiCarlo J., Neely E.K., Barnes P., Kuppermann N. Frequency of sub-clinical cerebral edema in children with diabetic ketoacidosis. Pediatr. Diab. 2006;7(2):75–80. DOI: 10.1111/j.1399-543X.2006.00156.x.
29. Glaser N., Sasaki-Russell J., Cohen M., Little C., O’Donnell M., Sall J. Histological and cognitive alterations in adult diabetic rats following an episode of juvenile diabetic ketoacidosis: Evidence of permanent cerebral injury. Neurosci. Lett. 2017;650:161–167. DOI: 10.1016/j.neulet.2017.04.035.
30. Zhou X., Zhang F., Hu X., Chen J., Wen X., Sun Y. et al. Inhibition of inflammation by astaxanthin alleviates cognition deficits in diabetic mice. Physiol. Behav. 2015;151:412–420. DOI: 10.1016/j.physbeh.2015.08.015.
31. Xu L., Zhu J., Yin W., Ding X. Astaxanthin improves cognitive deficits from oxidative stress, nitric oxide synthase and inflammation through upregulation of PI3K/Akt in diabetes rat. Int. J. Clin. Exp. Pathol. 2015;8(6):6083–6094.
32. Sun L.J., Hou X.H., Xue S.H., Yan F., Dai Y.J., Zhao C.H. Oil modulates glycogen synthase kinase-3 signaling pathway in diabetes-induced hippocampal neurons apoptosis. Brain Res. 2014;1574:37–49. DOI: 10.1016/j.brainres.2014.05.050.
33. Yonguc G.N., Dodurga Y., Adiguzel E., Gundogdu G., Kucukatay V., Ozbal S. et al. Grape seed extract has superior beneficial effects than Vitamin E on oxidative stress and apoptosis in the hippocampus of streptozotocin induced diabetic rats. Gene. 2015;555(2):119–126. DOI: 10.1016/j.gene.2014.10.052.
34. Zhang L., Chopp M., Zhang Y., Xiong Y., Li C., Sadry N. et al. Diabetes mellitus impairs cognitive function in middle-aged rats and neurological recovery in middle-aged rats after stroke. Stroke. 2016;47(8):2112–2118. DOI: 10.1161/STROKEAHA.115.012578.
35. Nakano M., Nagaishi K., Konari N., Saito Y., Chikenji T., Mizuete Y. Bone marrow-derived mesenchymal stem cells improve diabetes-induced cognitive impairment by exosome transfer into damaged neurons and astrocytes. Sci. Rep. 2016;6:24805. DOI: 10.1038/srep24805.
36. Moran C., Beare R., Phan T.G., Bruce D.G., Callisaya M.L., Srikanth V. Alzheimer’s Disease Neuroimaging Initiative (ADNI). Type 2 diabetes mellitus and biomarkers of neurodegeneration. Neurology. 2015;85(13):1123–1130. DOI: 10.1212/WNL.0000000000001982.
37. Aragno M., Mastrocola R., Medana C., Restivo F., Catalano M.G., Pons N. et al. Up-regulation of advanced glycated products receptors in the brain of diabetic rats is prevented by antioxidant treatment. Endocrinology. 2005;146(12):5561– 5567. DOI: 10.1210/en.2005-0712.
38. King G.L., Loeken M.R. Hyperglycemia-induced oxidative stress in diabetic complications. Histochem. Cell Biol. 2004;122(4):333–338. DOI: 10.1007/s00418-004-0678-9.
39. Wang X., Yu S., Hu J.P., Wang C.Y., Wang Y., Liu H.X. Streptozotocin-induced diabetes increases amyloid plaque deposition in AD transgenic mice through modulating AGEs/ RAGE/NF-κB pathway. Int. J. Neurosci. 2014;124(8):601– 608. DOI: 10.3109/00207454.2013.866110.
40. Hamed S.A. Brain injury with diabetes mellitus: evidence, mechanisms and treatment implications. Expert Rev. Clin. Pharmacol. 2017;10(4):409–428. DOI: 10.1080/17512433.2017.1293521.
41. Nett S.T., Noble J.A., Levin D.L., Cvijanovich N.Z., Vavilala M.S., Jarviset J.D. Biomarkers and genetics of brain injury risk in diabetic ketoacidosis: A pilot study. J. Pediatr. Intensive Care. 2014;3(2):59–66. DOI: 10.3233/PIC-14091.
42. Albuerne M., Mammola C.L., Naves F.J., Levanti B., Germanà G., Vega J.A. Immunohistochemical localization of S100 proteins in dorsal root, sympathetic and enteric ganglia of several mammalian species, including man. J. Peripher. Nerv. Syst. 1998;3(4):243–253.
43. Hamed S., Metwally K.A., Farghaly H.S., Sherief T. Serum levels of neuronspecific enolase in children with diabetic ketoacidosis. J. Child. Neurol. 2017(а);32(5):475–481. DOI: 10.1177/0883073816686718.
44. Wootton-Gorges S.L., Buonocore M.H., Caltagirone R.A., Kuppermann N., Glaser N.S. Progressive decrease in N-acetylaspartate/Creatine ratio in a teenager with type 1 diabetes and repeated episodes of ketoacidosis without clinically apparent cerebral edema: evidence for permanent brain injury. AJNR Am. J. Neuroradiol. 2010;31(4):780–781. DOI: 10.3174/ajnr.A1829.
45. Hoffman W.H., Whelan S.A., Lee N. Tryptophan, kynurenine pathway, and diabetic ketoacidosis in type 1 diabetes. PLoS One. 2021;16(7):e0254116. DOI: 10.1371/journal.pone.0254116.
46. Close T.E., Cepinskas G., Omatsu T., Rose K.L., Summers K., Patterson E.K. et al. Diabetic ketoacidosis elicits systemic inflammation associated with cerebrovascular endothelial dysfunction. Microcirculation. 2013;20(6):534–543. DOI: 10.1111/micc.12053.
47. Kommer T.N., Dik M.G., Comijs H.C., Jonker C., Deeg D.J. Role of lipoproteins and inflammation in cognitive decline: do they interact? Neurobiol. Aging. 2012;33(1):196–196. DOI: 10.1016/j.neurobiolaging.2010.05.024.
48. Siqueira L.F. Cerebrovascular complications of diabetic ketoacidosis in children. Arq. Bras. Endocrinol. Metabol. 2011;55(4):288–290. DOI: 10.1590/s0004-27302011000400009.
49. Bekyarova G.Y., Ivanova D.G., Madjova V.H. Molecular mechanisms associating oxidative stress with endothelial dysfunction in the development of various vascular complications in diabetes mellitus. Folia Med. (Plovdiv). 2007;49(3–4):13–19.
50. Yuen N., Anderson S.E., Glaser N.S., O’Donnell M.E. Cerebral blood flow and cerebral edema in ratswith diabetic ketoacidosis. Diabetes. 2008;57(10):2588–2594. DOI: 10.2337/db07-1410.
51. Suratt P.M., Peruggia M., D’Andrea L., Diamond R., Barth J.T., Nikova M. et al. Cognitive function and behavior of children with adenotonsillar hypertrophy suspected of having obstructive sleep-disordered breathing. Pediatrics. 2006;118(3):771–781. DOI: 10.1542/peds.2006-0173.
52. Fiedorowicz A., Prokopiuk S., Zendzian-Piotrowska M., Chabowski A., Car H. Sphingolipid profiles are altered in prefrontal cortex of rats under acute hyperglycemia. Neuroscience. 2014;256:282–291. DOI: 10.1016/j.neuroscience.2013.10.022.
53. Mackay M.T., Molesworth C., Northam E.A., Inder T.E., Cameron F.J., DKA Brain Injury Study Group. Diabetic ketoacidosis and electroencephalographic changes in newly diagnosed pediatric patients. Pediatr. Diabetes. 2016;17(4):244– 248. DOI: 10.1111/pedi.12284.
54. Cameron F.J., Scratch S.E., Nadebaum C., Northam E.A., Koves I., Jennings J. et al. Neurological consequences of diabetic ketoacidosis at initial presentation of type 1 diabetes in a prospective cohort study of children. Diabetes Care. 2014;37(6):1554–1562. DOI: 10.2337/dc13-1904.
55. Siller A.F., Lugar H., Rutlin J., Koller J.M., Semenkovich K., White N.H. et al. Severity of clinical presentation in youth with type 1 diabetes is associated with differences in brain structure. Pediatr. Diabetes. 2017;18(8):686–695. DOI: 10.1111/pedi.12420.
56. Marzelli M.J., Mazaika P.K., Barnea-Goraly N., Hershey T., Tsalikian E., Tamborlane W. et al. Neuroanatomical correlates of dysglycemia in young children with type 1 diabetes. Diabetes. 2014;63(1):343–353. DOI: 10.2337/db13-0179.
57. Ghetti S., Kuppermann N., Rewers A., Myers S.R., Schunk J.E., Stoner M.J. et al. Cognitive function following diabetic ketoacidosis in children with new-onset or previously diagnosed type 1 diabetes. Diabetes Care. 2020;43(11):2768–2775. DOI: 10.2337/dc20-0187.
58. Hannonen R., Tupola S., Ahonen T., Riikonen R. Neurocognitive functioning in children with type-1 diabetes with and without episodes of severe hypoglycaemia. Dev. Med. Child Neurol. 2003;45(4):262–268. DOI:10.1017/s0012162203000501.
59. Northam E.A., Rankins D., Lin A.R., Wellard M., Pell G.S., Finch S.J. Central nervous system function in youth with type 1 diabetes 12 years after disease onset. Diabetes Care. 2009;32(3):445–50. DOI: 10.2337/dc08-1657.
60. Gaudieri P.A., Chen R., Greer T.F., Holmes C.S. Cognitive function in children with type 1 diabetes: a meta-analysis. Diabetes Care. 2008;31(9):1892–1897. DOI: 10.2337/dc07-2132.
61. Semenkovich K., Bischoff A., Doty T., Nelson S., Siller A.F., Hershey T. Clinical presentation and memory function in youth with type 1 diabetes. Pediatr. Diabetes. 2016;17(7):492–499. DOI: 10.1111/pedi.12314.
62. Cato M.A., Mauras N., Mazaika P., Kollman C., Cheng P., Aye T. et al. Longitudinal evaluation of cognitive functioning in young children with Type 1 diabetes over 18 months. J. Int. Neuropsychol. Soc. 2016;22(3):293–302. DOI: 10.1017/S1355617715001289.
63. Nadebaum C., Scratch S.E., Northam E.A., Cameron F.J. Diabetic Ketoacidosis and Brain Injury Study Group. Clinical utility of mental state screening as a predictor of intellectual outcomes 6 months after diagnosis of type 1 diabetes. Pediatr. Diabetes. 2012;13(8):632–637. DOI: 10.1111/j.1399-5448.2012.00870.x.
64. Ghetti S., Lee J., Holtpatrick C., DeMaster D., Glaser N. Diabetic ketoacidosis and memory impariment in children with Type 1 diabetes. J. Pediatr. 2009;156(1):109–114. DOI: 10.1016/j.jpeds.2009.07.054.
65. Cato M.A., Mauras N., Ambrosino J., Bondurant A., Conrad A.L., Kollman C. et al. Cognitive functioning in young children with type 1 diabetes. J. Int. Neuropsychol. Soc. 2014;20(2):238–47. DOI: 10.1017/S1355617713001434.
66. Skipper N., Gaulke A., Sildorf S.M., Eriksen T.M., Nielsen N.F., Svensson J. Association of type 1 diabetes with standardized test scores of Danish schoolchildren. JAMA. 2019;321(5):484–492. DOI: 10.1001/jama.2018.21819.
67. Ohmann S., Popow C., Rami B., König M., Blaas S., Fliri C. et al. Cognitive functions and glycemic control in children and adolescents with type 1 diabetes. Psychol. Med. 2010;40(1):95–103. DOI: 10.1017/S0033291709005777.
68. Abo-El-Asrar M., Andrawes N.G., Rabie M.A., Aly El-Gabry D., Khalifa A., El-Sherif M et al. Cognitive functions in children and adolescents with early-onset diabetes mellitus in Egypt. Appl. Neuropsychol. Child. 2018;7(1):21–30. DOI: 10.1080/21622965.2016.1224186.
69. Na S.D., Burns T.G. Wechsler Intelligence Scale for Children-V: Test Review. Appl. Neuropsychol. Child. 2016;5(2):156–160. DOI: 10.1080/21622965.2015.1015337.
70. Segabinazi J.D., Pawlowski J., Zanini A.M., Wagner G.P., Sbicigo J.B., Trentini C.M. et al. Age, education and intellectual quotient influences: structural equation modeling on the study of Benton Visual Retention Test (BVRT). Span J. Psychol. 2020;23:e27. DOI: 10.1017/sjp.2020.30.
71. Miles S., Howlett C.A., Berryman C., Nedeljkovic M., Moseley G.L., Phillipou A. Considerations for using the Wisconsin Card Sorting Test to assess cognitive flexibility. Behav. Res. Methods. 2021;53(5):2083–2091. DOI: 10.3758/s13428-021-01551-3.
72. Scarpina F., Tagini S. The Stroop Color and Word Test. Front. Psychol. 2017;8:557. DOI: 10.3389/fpsyg.2017.00557. eCollection 2017.
73. Xourgia E., Papazafiropoulou A., Melidonis A. Antidiabetic treatment on memory and spatial learning: From the pancreas to the neuron. World J. Diabetes. 2019;10(3):169–180. DOI: 10.4239/wjd.v10.i3.169
74. Chutko L.S., Surushkina S.I., Iakovenko E.A., Bykova I.L., Nikishena I.S. Efficacy of cortexin in the treatment of memory disorders in children. [In Russ.]. Zh. Nevrol. Psikhiatr. Im. S. S. Korsakova. 2011;111(9Pt2):37–40.
75. Batysheva T.T., Platonova A.N., Chebanenko N.V., Bykova O.V. Management of cognitive impairment in children and adolescents with cerebral palsy treated with pantocalcin. [In Russ.]. Zh. Nevrol. Psikhiatr. Im. S.S. Korsakova. 2013;113(9):48–53.
76. Karahmadi M., Salehi M., Rezayi M., Mahaki B. Study of the effect of Memantine therapy on the treatment of dyslexia in children. J. Res. Med. Sci. 2017;22:137. DOI: 10.4103/jrms.JRMS_250_17. eCollection 2017.
77. Fiatarone Singh M.A., Gates N., Saigal N., Wilson G.C., Meiklejohn J., Brodaty H. et al.. The Study of Mental and Resistance Training (SMART) study-resistance training and/ or cognitive training in mild cognitive impairment: a randomized, double-blind, double-sham controlled trial. J. Am. Med. Dir. Assoc. 2014;15(12):873–880. DOI: 10.1016/j.jamda.2014.09.010.
78. Biessels G.J., Kerssen A., de Haan E.H., Kappelle L.J. Cognitive dysfunction and diabetes: implications for primary care. Prim. Care Diabetes. 2007;1(4):187–193. DOI: 10.1016/j.pcd.2007.10.002.
Рецензия
Для цитирования:
Магомедова К.Ш., Быков Ю.В., Батурин В.А. Диабетический кетоацидоз и когнитивные нарушения у детей и подростков. Бюллетень сибирской медицины. 2023;22(3):132-140. https://doi.org/10.20538/1682-0363-2023-3-132-140
For citation:
Magomedova K.S., Bykov Yu.V., Baturin V.A. Diabetic ketoacidosis and cognitive impairment in children and adolescents. Bulletin of Siberian Medicine. 2023;22(3):132-140. https://doi.org/10.20538/1682-0363-2023-3-132-140