The experimental study of dexamethasone effectiveness in a model of lipopolysaccharide-induced acute lung injury in rats
https://doi.org/10.20538/1682-0363-2023-4-22-30
Abstract
Aim. To evaluate the efficacy and safety of dexamethasone at various doses in an experimental model of direct acute lung injury (ALI).
Materials and methods. The study was performed on 80 white outbred male rats, in which ALI was modeled by intratracheal administration of lipopolysaccharide. The animals were divided into 4 groups: the control group and three experimental groups (groups 1–3), where the animals were intraperitoneally administered dexamethasone at doses of 0.52, 1.71, and 8.00 mg / kg / day, respectively, for 3 days. A complete blood count, blood biochemistry test, and hemostatic tests were performed to assess the efficacy and safety of dexamethasone on day 3 of the experiment The severity of pulmonary edema was assessed by changes in the lung weight coefficient and the wet / dry weight ratio.
Results. The use of dexamethasone in the ALI model increased the survival of rats in groups 1 and 2 by 35% (p < 0.05), and in group 3 only by 20% compared with control animals. The rat lung weight coefficient and the wet / dry weight ratio when using dexamethasone at all doses studied were equally reduced by an average of 28% (p < 0.05) and 17% (p < 0.05), respectively (p < 0.05). The severity of side effects of dexamethasone (hyperglycemia, hyperproteinemia, hyperkalemia, hypercoagulability, increased activity of creatine phosphokinase in the blood) was dose-dependent and was maximum in group 3 (dexamethasone dose 8.00 mg / kg / day).
Conclusion. The effectiveness of both low (0.52 mg / kg / day) and high (8.00 mg / kg / day) doses of dexamethasone in an experimental model of ALI in rats is characterized by the same anti-edematous effect. Based on the results of the blood tests and the analysis of rat survival, the use of dexamethasone at the lowest dose (0.52 mg / kg / day) should be considered the safest.
About the Authors
N. I. VoloshinRussian Federation
6g, Akademika Lebedeva Str., Saint Petersburg, 194044
V. A. Pugach
Russian Federation
4, Lesoparkovaya Str., Saint Petersburg, 195043
V. V. Salukhov
Russian Federation
6g, Akademika Lebedeva Str., Saint Petersburg, 194044
M. A. Tyunin
Russian Federation
4, Lesoparkovaya Str., Saint Petersburg, 195043
A. A. Minakov
Russian Federation
6g, Akademika Lebedeva Str., Saint Petersburg, 194044
N. S. Ilyinskiy
Russian Federation
4, Lesoparkovaya Str., Saint Petersburg, 195043
E. V. Levchuk
Russian Federation
4, Lesoparkovaya Str., Saint Petersburg, 195043
References
1. Минаков А.А., Салухов В.В., Харитонов М.А., Загородников Г.Г., Волошин Н.И. Некоторые особенности течения вирусной пневмонии при ожирении. Медицинский совет. 2022;16(18):131–140. DOI: 10.21518/2079-701X-2022-16-18-131-140.
2. Matute-Bello G., Frevert C.W., Martin T.R. Animal models of acute lung injury. Am. J. Physiol. Lung Cell Mol. Physiol. 2008Sept.;295(3):L379–L399. DOI: 10.1152/ajplung.00010.2008.
3. Mokra D., Mikolka P., Kosutova P., Mokry J. Corticosteroids in acute lung injury: the dilemma continues. Int. J. Mol. Sci. 2019Sept.25;20(19):4765. DOI: 10.3390/ijms20194765.
4. Yang J.W., Mao B., Tao R.J., Fan L.C., Lu H.W., Ge B.X. et al. Corticosteroids alleviate lipopolysaccharide-induced inflammation and lung injury via inhibiting NLRP3-inflammasome activation. J. Cell Mol. Med. 2020Nov.;24(21):12716–12725. DOI: 10.1111/jcmm.15849.
5. Qin M., Qiu Z. Changes in TNF-α, IL-6, IL-10 and VEGF in rats with ARDS and the effects of dexamethasone. Experimental and Therapeutic Medicine. 2019Jan.;17(1):383–387. DOI: 10.3892/etm.2018.6926.
6. Yang J.W., Mao B., Tao R.J., Fan L.C., Lu H.W., Ge B.X. et al. Corticosteroids alleviate lipopolysaccharide-induced inflammation and lung injury via inhibiting NLRP3-inflammasome activation. J. Cell Mol. Med. 2020Nov.;24(21):12716–12725. DOI: 10.1111/jcmm.15849.
7. Kim S.M., Min J.H., Kim J.H., Choi J., Park J.M., Lee J. et al. Methyl p hydroxycinnamate exerts anti inflammatory effects in mouse models of lipopolysaccharide induced ARDS. Mol. Med. Rep. 2022Jan.;25(1):37. DOI: 10.3892/mmr.2021.12553.
8. Al-Harbi N.O., Imam F., Al-Harbi M.M., Ansari M.A., Zoheir K.M., Korashy H.M. et al. Dexamethasone attenuates LPS-induced acute lung injury through inhibition of NFκB, COX-2, and pro-inflammatory mediators. Immunol. Invest. 2016May;45(4):349–369. DOI: 10.3109/08820139.2016.1157814.
9. Шекунова Е.В., Ковалева М.А., Макарова М.Н., Макаров В.Г. Выбор дозы препарата для доклинического исследования: межвидовой перенос доз. Ведомости Научного центра экспертизы средств медицинского применения. 2020;10(1):19–28. DOI: 10.30895/1991-2919-2020-10-1-19-28.
10. Волошин Н.И., Пугач В.А., Тюнин М.А., Строкина Е.И., Хижа В.В., Николаев А.В., Салухов В.В. Клинико-биохимические и патоморфологические особенности прямого острого повреждения легких у крыс, вызванного интратрахеальным введением липополисахарида Salmonella enterica. Лабораторные животные для научных исследований. 2022;(3):16–23. DOI: 10.57034/2618723X-2022-03-02.
11. Пугач В.А., Тюнин М.А., Ильинский Н.С., Левчук Е.В., Строкина Е.И., Ельцов А.А. Экспериментальная модель прямого острого повреждения легких у крыс, вызванного интратрахеальным введением липополисахарида Salmonella enterica. Биомедицина. 2021;17(3):84–89. DOI: 10.33647/2074-5982-17-3-84-89.
Review
For citations:
Voloshin N.I., Pugach V.A., Salukhov V.V., Tyunin M.A., Minakov A.A., Ilyinskiy N.S., Levchuk E.V. The experimental study of dexamethasone effectiveness in a model of lipopolysaccharide-induced acute lung injury in rats. Bulletin of Siberian Medicine. 2023;22(4):22-30. https://doi.org/10.20538/1682-0363-2023-4-22-30