Preview

Bulletin of Siberian Medicine

Advanced search

Prevalence of some internal diseases depending on the adipokine level in people under 45 years of age

https://doi.org/10.20538/1682-0363-2023-4-48-56

Abstract

The aim was to study the prevalence of some common internal diseases in young people of working and childbearing age, depending on the levels of adipokines.

Materials and methods. The study included 1,340 people aged 25–44 years. The levels of leptin, adiponectin, adipsin, lipocalin-2, plasminogen activator inhibitor-1 (PAI-1), and resistin were determined by the multiplex analysis. Low-density lipoprotein hypercholesterolemia (LDL hypercholesterolemia), coronary artery disease (CAD), type 2 diabetes mellitus (T2DM), arterial hypertension (AH), renal dysfunction (RD), and chronic bronchitis (CB) were studied.

Results. With an increase in the level of adiponectin, the prevalence of CAD increased by 8.6 times. The highest quartile of the adipsin level was characterized by an increase in the prevalence of LDL hypercholesterolemia by 12.9%, AH by 3.9%, and RD by 17.9%. The quartiles of lipolkalin-2 showed higher prevalence of LDL hypercholesterolemia, AH, and RD in Q4 compared to Q1. The prevalence of CB was associated with a decrease in the level of lipocalin-2 and was higher by 35.9% within Q1 compared to Q4. In the quartiles of PAI-1, the prevalence of T2DM and LDL hypercholesterolemia was 2 and 1.5 times higher, respectively, and the prevalence of RD was 2.5 times lower in Q4 than in Q1. In quartiles of resistin, the prevalence of LDL hypercholesterolemia, AH, and RD increased by 13–38%, while the prevalence of CB decreased by 20% in Q4, compared to Q1. The prevalence of LDL hypercholesterolemia and RD was higher within Q4 of leptin.

Conclusion. The results indicate the need for further research aimed at studying the molecular mechanisms underlying the effects of adipokines. This will allow to find a combined approach to restoring normal physiological levels of adipokines, which can have a positive effect in the studied internal diseases.

About the Authors

E. V. Kashtanova
Research Institute of Internal and Preventive Medicine – Branch of the Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences
Russian Federation

175/1, Bogatkova Str., Novosibirsk, 630089



Ya. V. Polonskaya
Research Institute of Internal and Preventive Medicine – Branch of the Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences
Russian Federation

175/1, Bogatkova Str., Novosibirsk, 630089



L. V. Shcherbakova
Research Institute of Internal and Preventive Medicine – Branch of the Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences
Russian Federation

175/1, Bogatkova Str., Novosibirsk, 630089



V. S. Shramko
Research Institute of Internal and Preventive Medicine – Branch of the Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences
Russian Federation

175/1, Bogatkova Str., Novosibirsk, 630089



E. M. Stakhneva
Research Institute of Internal and Preventive Medicine – Branch of the Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences
Russian Federation

175/1, Bogatkova Str., Novosibirsk, 630089



A. D. Khudyakova
Research Institute of Internal and Preventive Medicine – Branch of the Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences
Russian Federation

175/1, Bogatkova Str., Novosibirsk, 630089



E. V. Sadovski
Research Institute of Internal and Preventive Medicine – Branch of the Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences
Russian Federation

175/1, Bogatkova Str., Novosibirsk, 630089



D. V. Denisova
Research Institute of Internal and Preventive Medicine – Branch of the Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences
Russian Federation

175/1, Bogatkova Str., Novosibirsk, 630089



Yu. I. Ragino
Research Institute of Internal and Preventive Medicine – Branch of the Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences
Russian Federation

175/1, Bogatkova Str., Novosibirsk, 630089



References

1. Fasshauer M., Blüher M. Adipokines in health and disease. Trends Pharmacol. Sci. 2015;36(7):461–470. DOI: 10.1016/j.tips.2015.04.014.

2. Zhao S., Kusminski C.M., Scherer P.E. Adiponectin, leptin and cardiovascular disorders. Circ. Res. 2021;128(1):136–149. DOI: 10.1161/CIRCRESAHA.120.314458.

3. Bielecka-Dabrowa A., Bartlomiejczyk M.A., Sakowicz A., Maciejewski M., Banach M. The role of adipokines in the development of arterial stiffness and hypertension. Angiology. 2020;71(8):754–761. DOI: 10.1177/0003319720927203.

4. Mach F., Baigent C., Catapano A.L., Koskinas K.C., Casula M., Badimon L. et al. ESC Scientific Document Group. 2019 ESC/ EAS Guidelines for the management of dyslipidaemias: lipid modification to reduce cardiovascular risk. European Heart Journal. 2020;1(1):111–188. DOI: 10.1093/eurheartj/ehz455.

5. Rydén L., Grant P.J., Anker S.D., Berne C., Cosentino F., Danchin N. et al. Guidelines on diabetes, pre-diabetes, and cardiovascular diseases developed in collaboration with the EASD: The Task Force on diabetes, pre-diabetes, and cardiovascular diseases of the European Society of Cardiology (ESC) and developed in collaboration with the European Association for the Study of Diabetes (EASD). European Heart Journal. 2013;34(39):3035–3087. DOI: 10.1093/eurheartj/eht108.

6. Артериальная гипертензия у взрослых. Клинические рекомендации 2020. Российский кардиологический журнал. 2020;25(3):3786. DOI: 10.15829/1560-4071-2020-3-3786.

7. Кокосов А.Н. Хронический необструктивный бронхит. Клиническая медицина. 1999;1:11–16.

8. Achari A.E., Jain S.K. Adiponectin, a therapeutic target for obesity, diabetes, and endothelial dysfunction. Int. J. Mol. Sci. 2017;18:1321. DOI: 10.3390/ijms18061321.

9. Gariballa S., Alkaabi J., Yasin J., Al Essa A. Total adiponectin in overweight and obese subjects and its response to visceral fat loss. BMC Endocr. Disord. 2019;19(1):55. DOI: 10.1186/s12902-019-0386-z.

10. Liu C., Feng X., Li Q., Wang Y., Li Q., Hua M. Adiponectin, TNF-α and inflammatory cytokines and risk of type 2 diabetes: A systematic review and meta-analysis. Cytokine. 2016;86:100–109. DOI: 10.1016/j.cyto.2016.06.028.

11. Lindberg S., Jensen J.S., Pedersen S.H., Galatius S., Frystyk J., Flyvbjerg A. et al. Low adiponectin levels and increased risk of type 2 diabetes in patients with myocardial infarction. Diabetes Care. 2014;37:3003–3008.

12. Kou H., Deng J., Gao D., Song A., Han Z., Wei J. et al. Relationship among adiponectin, insulin resistance and atherosclerosis in non-diabetic hypertensive patients and healthy adults. Clin. Exp. Hypertens. 2018;40(7):656–663. DOI: 10.1080/10641963.2018.1425414.

13. Kim D.H., Kim C., Ding E.L., Townsend M.K., Lipsitz L.A. Adiponectin levels and the risk of hypertension: a systematic review and meta-analysis. Hypertension. 2013;62(1):27–32. DOI: 10.1161/HYPERTENSIONAHA.113.01453.

14. Doumatey A.P., Bentley A.R., Zhou J., Huang H., Adeyemo A., Rotimi C.N. Paradoxical hyperadiponectinemia is associated with the metabolically healthy obese (MHO) phenotype in African Americans. J. Endocrinol. Metab. 2012;2(2):51–65. DOI: 10.4021/jem95W.

15. Kobayashi H., Ouchi N., Kihara S., Walsh K., Kumada M., Abe Y. et al. Selective suppression of endothelial cell apoptosis by the high molecular weight form of adiponectin. Circ. Res. 2004;94(4):27–31. DOI: 10.1161/01.RES.0000119921.86460.37.

16. Woodward L., Akoumianakis I., Antoniades C. Unravelling the adiponectin paradox: Novel roles of adiponectin in the regulation of cardiovascular disease. Br. J. Pharmacol. 2017;174:4007–4020. DOI: 10.1111/bph.13619.

17. Wannamethee S.G., Whincup P., Lennon L., Sattar N. Circulating adiponectin levels and mortality in elderly men with and without cardiovascular disease and heart failure. Arch. Intern. Med. 2007;167:1510–1517. DOI: 10.1001/archinte.167.14.1510.

18. McEntegart M.B., Awede B., Petrie M.C., Sattar N., Dunn F.G., Macfarlane N.G. et al. Increase in serum adiponectin concentration in patients with heart failure and cachexia: Relationship with leptin, other cytokines, and B-type natriuretic peptide. Eur. Heart J. 2007;28:829–835. DOI: 10.1093/eurheartj/ehm033.

19. Dornbush S., Aeddula N.R. Physiology, leptin. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing, 2021.

20. Khazaei M., Tahergorabi Z. Leptin and its cardiovascular effects: Focus on angiogenesis. Advanced Biomedical Research. 2015;4(1):79. DOI: 10.4103/2277-9175.156526.

21. Fried S.K., Ricci M.R., Russell C.D., Laferrère B. Regulation of leptin production in humans. J. Nutr. 2000;130(12):3127S–3131S. DOI: 10.1093/jn/130.12.3127S.

22. Katsiki N., Mikhailidis D.P., Banach M. Leptin, cardiovascular diseases and type 2 diabetes mellitus review-article. Acta Pharmacol. Sin. 2018;39:1176–1188. DOI: 10.1038/aps.2018.40.

23. Marchelek-Mysliwiec M., Wisniewska M., Nowosiad-Magda M., Safranow K., Kwiatkowska E., Banach B. et al. Association between plasma concentration of klotho protein, osteocalcin, leptin, adiponectin, and bone mineral density in patients with chronic kidney disease. Horm. Metab. Res. 2018;50:816–821. DOI: 10.1055/a-0752-4615.

24. Wang J.S., Lee W.J., Lee I.T., Lin S.Y., Lee W.L., Liang K.W. et al. Association between serum adipsin levels and insulin resistance in subjects with various degrees of glucose intolerance. J. Endocr. Soc. 2018;3(2):403–410. DOI: 10.1210/js.2018-00359.

25. Василенко М.А., Кириенкова Е.В., Скуратовская Д.А., Затолокин П.А., Миронюк Н.И., Литвинова Л.С. Роль продукции адипсина и лептина в формировании инсулинорезистентности у больных абдоминальным ожирением. Доклады Академии наук. 2017;475(3):336–341. DOI: 10.7868/S0869565217210228.

26. Hertle E., Arts I.C., van der Kallen C.J., Feskens E.J., Schalkwijk C.G., Stehouwer C.D. et al. The alternative complement pathway is longitudinally associated with adverse cardiovascular outcomes. Thromb. Haemost. 2016;115(2):446–457. DOI: 10.1160/TH15-05-0439.

27. Song N.J., Kim S., Jang B.H., Chang S.H., Yun U.J., Park K.M. et al. Molecule-induced complement factor D (adipsin) promotes lipid accumulation and adipocyte differentiation. PLoS One. 2016;11(9):e0162228. DOI: 10.1371/journal.pone.0162228.

28. Jalal D., Renner B., Laskowski J., Stites E., Cooper J., Valente K. et al. Endothelial microparticles and systemic complement activation in patients with chronic kidney disease. J. Am. Heart Assoc. 2018;7(14):e007818. DOI: 10.1161/JAHA.117.007818.

29. Buonafine M., Martinez-Martinez E., Jaisser F. More than a simple biomarker: the role of NGAL in cardiovascular and renal diseases. Clin. Sci. (London). 2018;132(9):909–923. DOI: 10.1042/CS20171592.

30. Cabedo Martinez A.I., Weinhäupl K., Lee W.K., Wolff N.A., Storch B., Żerko S. et al. Biochemical and structural characterization of the interaction between the siderocalin NGAL/ LCN2 (neutrophil gelatinase-associated lipocalin/lipocalin 2) and the N-terminal domain of its endocytic receptor SLC22A17. J. Biol. Chem. 2016;291(6):2917–2930. DOI: 10.1074/jbc.M115.685644.

31. Chella Krishnan K., Sabir S., Shum M., Meng Y., Acín-Pérez R., Lang J.M. et al. Sex-specific metabolic functions of adipose lipocalin-2. Mol. Metab. 2019;30:30–47. DOI: 10.1016/j.molmet.2019.09.009.

32. Chong J.J.H., Prince R.L., Thompson P.L., Thavapalachandran S., Ooi E., Devine A. et al. Association between plasma neutrophil gelatinase-associated lipocalin and cardiac disease hospitalizations and deaths in older women. J. Am. Heart Assoc. 2019;8(1):e011028. DOI: 10.1161/JAHA.118.011028.

33. Cruz D.N., Gaiao S., Maisel A., Ronco C., Devarajan P. Neutrophil Gelatinase-Associated Lipocalin as a Biomarker of Cardiovascular Disease: A Systematic Review. Clin. Chem. Lab. Med. 2012;50:1533–1545. DOI: 10.1515/cclm-2012-0307.

34. Wang L.K., Wang H., Wu X.L., Shi L., Yang R.M., Wang Y.C. Relationships among resistin, adiponectin, and leptin and microvascular complications in patients with type 2 diabetes mellitus. J. Int. Med. Res. 2020;48(4):300060519870407. DOI: 10.1177/0300060519870407.

35. Niaz S., Latif J., Hussain S. Serum resistin: A possible link between inflammation, hypertension and coronary artery disease. Pak. J. Med. Sci. 2019;35(3):641–646. DOI: 10.12669/pjms.35.3.274.

36. Jiang Y., Lu L., Hu Y., Li Q., An C., Yu X. et al. Resistin induces hypertension and insulin resistance in mice via a TLR4-dependent pathway. Sci. Rep. 2016;6:22193. DOI: 10.1038/srep22193.

37. Chen C., Jiang J., Lü J.M., Chai H., Wang X., Lin P.H. et al. Resistin decreases expression of endothelial nitric oxide synthase through oxidative stress in human coronary artery endothelial cells. Am. J. Physiol. Heart Circ. Physiol. 2010;299(1):H193–201. DOI: 10.1152/ajpheart.00431.2009.

38. Axelsson J., Bergsten A., Qureshi A.R., Heimbürger O., Bárány P., Lönnqvist F. et al. Elevated resistin levels in chronic kidney disease are associated with decreased glomerular filtration rate and inflammation, but not with insulin resistance. Kidney Int. 2006;69(3):596–604. DOI: 10.1038/sj.ki.5000089.

39. Dan S., Aditya P., Banerjee P., Bal C., Roy H., Banerjee I. Effect of chronic kidney disease on serum resistin level. Niger J. Clin. Pract. 2014;17(6):735–738. DOI: 10.4103/1119-3077.144387.

40. Liu G., Deng Y., Sun L., Ye X., Yao P., Hu Y. et al. Elevated plasma tumor necrosis factor-α receptor 2 and resistin are associated with increased incidence of kidney function decline in Chinese adults. Endocrine. 2016;52(3):541–549. DOI: 10.1007/s12020-015-0807-3.

41. Pérez-Bautista O., Montaño M., Pérez-Padilla R., Zúñiga-Ramos J., Camacho-Priego M., Barrientos-Gutiérrez T. et al. Women with COPD by biomass show different serum profile of adipokines, incretins, and peptide hormones than smokers. Respir. Res. 2018;19(1):239. DOI: 10.1186/s12931-018-0943-4.

42. Vecchiola A., García K., González-Gómez L.M., Tapia-Castillo A., Artigas R., Baudrand R. et al. Plasminogen activator inhibitor-1 and adiponectin are associated with metabolic syndrome components. Am. J. Hypertens. 2022;35(4):311–318. DOI: 10.1093/ajh/hpab138.


Review

For citations:


Kashtanova E.V., Polonskaya Ya.V., Shcherbakova L.V., Shramko V.S., Stakhneva E.M., Khudyakova A.D., Sadovski E.V., Denisova D.V., Ragino Yu.I. Prevalence of some internal diseases depending on the adipokine level in people under 45 years of age. Bulletin of Siberian Medicine. 2023;22(4):48-56. https://doi.org/10.20538/1682-0363-2023-4-48-56

Views: 456


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1682-0363 (Print)
ISSN 1819-3684 (Online)