Preview

Bulletin of Siberian Medicine

Advanced search

Oxidative phosphorylation in brown adipose tissue in a type II diabetes mellitus mouse model after forced treadmill running

https://doi.org/10.20538/1682-0363-2024-1-48-55

Abstract

Aim. To study the effect of forced exercises on the content and parameters of oxidative phosphorylation in brown adipose tissue of mice with type II diabetes mellitus.

Materials and methods. To model the disease, we used a high-fat diet and physical exercises in the form of forced treadmill running for 4 weeks. The content of oxidative phosphorylation enzymes in brown adipose tissue was determined by Western blotting.

Results. Modeling diabetes in experimental animals was accompanied by expansion of adipose tissue. However, in brown adipose tissue, the content of all oxidative phosphorylation components decreases. Apparently, during type II diabetes mellitus modeling in mice, there is a decrease in the “energy efficiency” in brown adipose tissue, which is partially offset by an increase in its content in the body. Regular physical activity in mice with type II diabetes mellitus, in contrast to healthy animals, contributes to a decrease in the content of brown adipose tissue. At the same time, the content of most oxidative phosphorylation components in brown adipose tissue increases, in some casesб it even exceeds the baseline values. The latter is typical of a variable load mode – when the execution time of exercises periodically changes.

Conclusion. The obtained results suggest that metabolic rearrangements in brown adipose tissue may serve as some of the mechanisms of preventive and projective effects of physical activity in type 2 diabetes mellitus.

About the Authors

A. N. Zakharova
National Research Tomsk State University
Russian Federation

36, Lenina Av., Tomsk, 634050



K. G. Milovanova
National Research Tomsk State University
Russian Federation

36, Lenina Av., Tomsk, 634050



A. A. Orlova
National Research Tomsk State University
Russian Federation

36, Lenina Av., Tomsk, 634050



O. V. Kollantay
National Research Tomsk State University
Russian Federation

36, Lenina Av., Tomsk, 634050



I. Yu. Shuvalov
National Research Tomsk State University
Russian Federation

36, Lenina Av., Tomsk, 634050



L. V. Kapilevich
National Research Tomsk State University; Siberian State Medical University
Russian Federation

36, Lenina Av., Tomsk, 634050,

2, Moscow Trakt, Tomsk, 634050



References

1. Betz M.J., Enerbäck S. Targeting thermogenesis in brown fat and muscle to treat obesity and metabolic disease. Nat. Rev. Endocrinol. 2018;14(2):77–87. DOI: 10.1038/nrendo.2017.132.

2. Jung S.M., Sanchez-Gurmaches J., Guertin D.A. Brown adipose tissue development and metabolism. Handb. Exp. Pharmacol. 2019;251:3–36. DOI: 10.1007/164_2018_168.

3. Кокшарова Е.О., Майоров А.Ю., Шестакова М.В., Дедов И.И. Метаболические особенности и терапевтический потенциал бурой и «бежевой» жировой ткани. Сахарный диабет. 2014;17(4):5–15. DOI: 10.14341/DM201445-15.

4. Cheng L., Wang J., Dai H., Duan Y., An Y., Shi L. et al. Brown and beige adipose tissue: a novel therapeutic strategy for obesity and type 2 diabetes mellitus. Adipocyte. 2021;10(1):48–65. DOI: 10.1080/21623945.2020.1870060.

5. Kaisanlahti A., Glumoff T. Browning of white fat: agents and implications for beige adipose tissue to type 2 diabetes. J. Physiol. Biochem. 2019;75(1):1–10. DOI: 10.1007/s13105-018-0658-5.

6. Coffey V.G., Hawley J.A. The molecular bases of training adaptation. Sports Med. 2007;37(9):737–763. DOI: 10.2165/00007256-200737090-00001.

7. Karstoft K., Pedersen B.K. Exercise and type 2 diabetes: focus on metabolism and inflammation. Immunol. Cell Biol. 2016;94(2):146–150. DOI: 10.1038/icb.2015.101.

8. Pedersen B.K., Saltin B. Exercise as medicine – evodence for prescribing exercise as therapy in 26 different chronic diseases. Scand. J. Med. Sci. Sports. 2015;25:1–72. DOI: 10.1111/sms.12581.

9. Stanford K.I., Rasmussen M., Baer L.A., Lehnig A.C., Rowland L.A., White J.D. et al. Paternal Exercise improves glucose metabolism in adult offspring. Diabetes. 2018;67(12):2530– 2540. DOI: 10.2337/db18-0667.

10. Basse A.L., Dalbram E., Larsson L., Gerhart-Hines Z., Zierath J.R., Treebak J.T. Skeletal muscle insulin sensitivity show circadian rhythmicity which is independent of exercise training status. Front Physiol. 2018;9:1198. DOI: 10.3389/fphys.2018.01198.

11. Kapilevich L.V., Zakharova A.N., Dyakova E.Yu., Kalinnikova J.G., Chibalin A.V. Mice experimental model of diabetes mellitus type ii based on high fat diet. Bull. Siberian Med. 2019;18(3):53–61. DOI: 10.20538/1682-0363-2019-3-53-61.

12. Zakharova A.N., Kalinnikova Yu.G., Negodenko E.S., Orlova A.A., Kapilevich L.V. Experimental simulation of cyclic training loads. Teor. Prakt. Fizich. Kult. 2020;10:26–27.

13. Lehnig A.C., Stanford K.I. Exercise-induced adaptations to white and brown adipose tissue. J. Exp. Biol. 2018;221(Pt. Suppl.):jeb161570. DOI: 10.1242/jeb.161570.

14. Aldiss P., Betts J., Sale C., Pope M., Budge H., Symonds M.E. Exercise-induced ‘browning’ of adipose tissues. Metabolism. 2018;81:63–70. DOI: 10.1016/j.metabol.2017.11.009.

15. Mu W.J., Zhu J.Y., Chen M., Guo L. Exercise-mediated browning of white adipose tissue: its significance, mechanism and effectiveness. Int. J. Mol. Sci. 2021;22(21):11512. DOI: 10.3390/ijms222111512.


Review

For citations:


Zakharova A.N., Milovanova K.G., Orlova A.A., Kollantay O.V., Shuvalov I.Yu., Kapilevich L.V. Oxidative phosphorylation in brown adipose tissue in a type II diabetes mellitus mouse model after forced treadmill running. Bulletin of Siberian Medicine. 2024;23(1):48-55. https://doi.org/10.20538/1682-0363-2024-1-48-55

Views: 419


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1682-0363 (Print)
ISSN 1819-3684 (Online)