Parameters of the mmp / timp system in assessing the clinical course of pulmonary tuberculoma
https://doi.org/10.20538/1682-0363-2024-1-77-84
Abstract
Aim. To study the parameters of the matrix metalloproteinase (MMP) / tissue inhibitors of metalloproteinase (TIMP) system in assessing the clinical course of pulmonary tuberculoma.
Materials and methods. We examined 87 patients (55 men and 32 women), average age 33 [28; 43] years, with a morphologically and bacteriologically confirmed diagnosis of tuberculoma, who received treatment at St. Petersburg Research Institute of Phthisiopulmonology. In all patients, computed tomography of the chest, fiberoptic bronchoscopy, and lung function tests were performed. In the blood serum, concentrations of MMP-1, -8, -9, and their tissue inhibitor TIMP-1 were determined using ELISA (R&D Systems, USA), and the activity of α2-macroglobulin (MG) was determined by the enzyme assays. For statistical data processing, Statistica 10.0 and R were used.
Results. In the study group, single and multiple tuberculomas were revealed in 37 and 63% of cases, respectively, necrotic areas – in 50% of patients, external respiration disorders – in 48% of cases, and catarrhal bronchitis (CB) – in 77% of cases. Tobacco smokers (TS) were identified in 69% of cases. Significant differences between MMP concentrations allowed us to distinguish four patterns from the characteristics adopted for the clinical and radiological assessment of disease intensity. It was shown that an increase in the levels of MMP-1 and MMP-9 can be a predictor of tuberculoma progression caused by a diffuse process with necrotic areas and bronchogenic dissemination (pattern 1, 2). Changes in the levels of MMP-8, TIMP-1 or MG (pattern 3, 4) were associated with permanent exposure to a non-specific component of inflammation (TS or CB).
Conclusion. Changes in the MMP / TIMP system parameters can be used as objective laboratory protein biomarkers to assess the clinical course of pulmonary tuberculoma.
About the Authors
D. S. EsmedlyaevaRussian Federation
2–4, Ligovsky Av., Saint Petersburg, 191036
N. P. Alekseeva
Russian Federation
7/9, Universitetskaya Emb., Saint Petersburg, 199034
M. Ye. Dyakova
Russian Federation
2–4, Ligovsky Av., Saint Petersburg, 191036
D. V. Karostik
Russian Federation
2–4, Ligovsky Av., Saint Petersburg, 191036
I. V. Grigoriev
Russian Federation
7/9, Universitetskaya Emb., Saint Petersburg, 199034
E. G. Sokolovich
Russian Federation
68, Leningradskaya Str., Saint Petersburg, 197758,
2/4, Dostoevskogo Str., Moscow, 127473,
2/1 Barrikadnaya Str., Build. 1, Moscow, 125993
References
1. О совершенствовании противотуберкулезных мероприятий в Российской Федерации: Приказ Минздрава России от 21.03.2003 № 109 (ред. от 05.06.2017). URL: http://www.pravo.gov.ru (дата обращения: 27.02.2022).
2. Ариэль Б.М., Елькин А.В., Басек Т.С., Осташко О.М., Кацер Л.И. Морфологические особенности фиброзно-кавернозного туберкулеза легких на операционном материале. Архив патологии. 2004;66(1):14–18.
3. Холодок О.А., Григоренко А.А., Черемкин М.И. Туберкулема легкого как форма туберкулезного процесса. Бюллетень физиологии и патологии дыхания. 2014;(53):126–131.
4. Национальные клинические рекомендации по применению хирургических методов в лечении туберкулеза легких. В кн.: Торакальная хирургия; под ред. П.К. Яблонского. М.: ГЭОТАР-Медиа, 2014:160.
5. Валиев Р.Ш., Валиев Н.Р., Иксанов И.Я., Филатова М.С. Эпидемическое значение туберкулем легких, результаты их хирургического и нехирургического лечения по данным республики Татарстан. Туберкулез и болезни легких. 2014;4:18–21.
6. Lee H.S., Kim W.J. The role of matrix metalloproteinase in inflammation with a focus on infectious diseases. Int. J. Mol. Sci. 2022;23(18):10546. DOI: 10.3390/ijms231810546.
7. Krug S., Parveen S., Bishai W.R. Host-directed therapies: modulating inflammation to treat tuberculosis. Front. Immunol. 2021;12:660916. DOI: 10.3389/fimmu.2021.660916.
8. Uysal P., Uzun H. Relationship between circulating serpina3g, matrix metalloproteinase-9, and tissue inhibitor of metalloproteinase-1 and -2 with chronic obstructive pulmonary disease severity. Biomolecules. 2019;9:62–73. DOI: 10.3390/biom9020062.
9. Kumar N.P., Moideen K., Viswanathan V., Shruthi B.S., Sivakumar S., Menon P.A. et al. Elevated levels of matrix metalloproteinases reflect severity and extent of disease in tuberculosis-diabetes co-morbidity and are predominantly reversed following standard anti-tuberculosis or metformin treatment. BMC Infect. Dis. 2018;18:1–10. DOI: 10.1186/s12879-018-3246-y.
10. Alexeyeva N.P., Al-Juboori F.S., Skurat E.P. Symptom analysis of multidimensional categorical data with applications. Periodicals of Engineering and Natural Sciences. 2020;8(3):1517–1524. DOI: 10.21533/pen.v8i3.1539.
11. Гаврилов П.В., Баулин И.А., Лукина О.В. Стандартизованная интерпретация и контроль выявленных одиночных образований в легких по системе lung imaging reporting and data system (lung-rads™). Медицинский альянс. 2017;3:17–27.
12. Pellegrino R., Viegi G., Brusasco V., Crapo R.O., Burgos F., Casaburi R. et al. Interpretative strategies for lung function tests. Eur. Respir. J. 2005;26(5):948–968. DOI: 10.1183/09031936.05.00035205.
13. Кирюхина Л.Д., Гаврилов П.В., Савин И.Б., Тамм О.А., Володич О.С., Павлова М.В. и др. Вентиляционная и газообменная функции легких у больных с локальными формами туберкулеза легких. Пульмонология. 2013;(6):65. DOI: 10.18093/0869-0189-2013-0-6-807-811.
14. Стрелис А.А., Стрелис А.К., Некрасов Е.В. Предоперационная подготовка больных туберкулемами легких с локальными катаральными эндобронхитами. Бюллетень сибирской медицины. 2005;4(4):117–122. DOI: 10.20538/1682-0363-2005-4-117-122.
15. Холодок О.А., Черемкин М.И. Морфологические аспекты активности туберкулем легкого. Бюллетень физиологии и патологии дыхания. 2013;(49):51–54.
16. Kubler A., Luna B., Larsson C., Ammerman N.C., Andrade B.B., Orandle M. et al. Mycobacterium tuber-culosis dysregulates MMP/TIMP balance to drive rapid cavitation and unrestrained bacterial proliferation. J. Pathol. 2015;235(3):431–444. DOI: 10.1002/path.4432.
17. Valdez-Miramontes C.E., Trejo Martínez L.A., Torres-Juárez F., Rodríguez Carlos A., Marin- Luévano S.P., de Haro-Acosta J.P. et al. Nicotine modulates molecules of the innate immune response in epithelial cells and macrophages during infection with M. tuberculosis. Clin. Exp. Immunol. 2020;199(2):230– 243. DOI: 10.1111/cei.13388.
18. Walker N.F., Karim F., Moosa M.Y.S., Moodley S., Mazibuko M., Khan K. et al. Elevated plasma mtrix metalloproteinase 8 associates with sputum culture positivity in pulmonary tuberculosis. J. Infect. Dis. 2022;226(5):928–932. DOI: 10.1093/infdis/jiac160.
19. Павлова Е.В. Mорфологические особенности бронхолегочной системы больных туберкулезом легких. Креативная хирургия и онкология. 2012;3:67–70. DOI: 10.24060/2076-3093-2012-0-3-67-70.
Review
For citations:
Esmedlyaeva D.S., Alekseeva N.P., Dyakova M.Ye., Karostik D.V., Grigoriev I.V., Sokolovich E.G. Parameters of the mmp / timp system in assessing the clinical course of pulmonary tuberculoma. Bulletin of Siberian Medicine. 2024;23(1):77-84. https://doi.org/10.20538/1682-0363-2024-1-77-84