Preview

Bulletin of Siberian Medicine

Advanced search

Changes in the cardiovascular profile in patients 3 and 12 months after COVID-19 pneumonia: parameters of arterial stiffness, global longitudinal strain, and diastolic function of the left ventricle

https://doi.org/10.20538/1682-0363-2024-1-94-104

Abstract

Aim. To study changes in the brachial – ankle pulse wave velocity (baPWV), ankle – brachial index (ABI), diastolic function, and global longitudinal strain of the left ventricle (LV) 3 and 12 months after COVID-19 pneumonia.

Materials and methods. The dynamics of vascular age and LV global longitudinal strain was studied in 154 patients 3 and 12 months after COVID-19 pneumonia (51 ± 12 years, 48% were women). The control group consisted of 55 sexand age-matched individuals.

Results. During the follow-up, the average baPWV decreased (13.2 [11.8; 15.1] cm / sec vs. 13.0 [11.8; 14.1] cm/ s; p < 0.001), and the frequency of its elevated values declined (45.4 vs. 35.1%; p = 0.008). The average ABI increased (1.09 [1.04; 1.14] vs. 1.11 [1.06; 1.17]; p = 0.012), but remained within the normal range. LV global longitudinal strain (LV GLS) (–19.6 ± 2.2 and –19.7 ± 2.5%; p = 0.854) and the frequency of reduced LV GLS (21.4 and 26.6%; p = 0.268) did not change significantly and did not differ from values in the control group. Global longitudinal strain in the LV basal inferoseptal segment improved (–19.2 ± 3.6% vs. –20.1 ± 4.0%; p = 0.032). The early diastolic mitral annular velocity decreased (8.4 ± 3.0 cm / s vs. 8.0 ± 2.5 cm / s; p = 0.023). The LV isovolumic relaxation time was greater than in the control group (101.8 ± 22.3 ms at the 1st visit vs. 92.9 ± 21.5 ms; p = 0.012; 105.9 ± 21.9 ms vs. 92.9 ± 21.5 ms at the 2nd visit; p < 0.001). A positive correlation was found between baPWV (r = 0.209; p = 0.009) and ABI (r = 0.190; p = 0.021) and strain parameters of the LV basal segments 12 months after discharge.

Conclusion. Patients with optimal visualization on echocardiography at 12 months after COVID-19 pneumonia, compared to the results of the examination 3 months after the disease, had deteriorated parameters of LV diastolic function. LV GLS was within the grey zone and did not change significantly. An improvement in arterial stiffness was noted, associated with an improvement in the strain of basal LV segments.

About the Authors

E. I. Yaroslavskaya
Tyumen Cardiology Research Center, Tomsk National Research Medical Center (NRMC) of the Russian Academy of Sciences
Russian Federation

111, Melnikaite Str., Tyumen, 625026



N. E. Shirokov
Tyumen Cardiology Research Center, Tomsk National Research Medical Center (NRMC) of the Russian Academy of Sciences
Russian Federation

111, Melnikaite Str., Tyumen, 625026



D. V. Krinochkin
Tyumen Cardiology Research Center, Tomsk National Research Medical Center (NRMC) of the Russian Academy of Sciences
Russian Federation

111, Melnikaite Str., Tyumen, 625026



A. V. Migacheva
Tyumen Cardiology Research Center, Tomsk National Research Medical Center (NRMC) of the Russian Academy of Sciences
Russian Federation

111, Melnikaite Str., Tyumen, 625026



I. O. Korovina
Regional Clinical Hospital No. 1
Russian Federation

55, Kotovskogo Str., Tyumen, 625023



N. A. Osokina
Tyumen Cardiology Research Center, Tomsk National Research Medical Center (NRMC) of the Russian Academy of Sciences
Russian Federation

111, Melnikaite Str., Tyumen, 625026



A. D. Sapozhnikova
Tyumen Cardiology Research Center, Tomsk National Research Medical Center (NRMC) of the Russian Academy of Sciences
Russian Federation

111, Melnikaite Str., Tyumen, 625026



T. I. Petelina
Tyumen Cardiology Research Center, Tomsk National Research Medical Center (NRMC) of the Russian Academy of Sciences
Russian Federation

111, Melnikaite Str., Tyumen, 625026



References

1. Mottram P.M., Haluska B.A., Leano R., Carlier S., Case C., Marwick T.H. Relation of arterial stiffness to diastolic dysfunction in hypertensive heart disease. Heart. 2005;91(12):1551– 1556. DOI: 10.1136/hrt.2004.046805.

2. Çiftel M., Ateş N., Yılmaz O. Investigation of tndothelial dysfunction and arterial stiffness in multisystem inflammatory syndrome in children. Eur. J. Pediatr. 2022;181(1):91–97. DOI: 10.1007/s00431-021-04136-6.

3. Kim H.L., Seo J.B., Chung W.Y., Kim S.H., Kim M.A., Zo J.H. Independent association between brachial-ankle pulse wave velocity and global longitudinal strain of left ventricle. Int. J. Cardiovasc. Imaging. 2015;31(8):1563–1570. DOI: 10.1007/s10554-015-0744-5.

4. Hwang J.W., Kang S.J., Lim H.S., Choi B.J., Choi S.Y., Hwang G.S. et al. Impact of arterial stiffness on regional myocardial function assessed by speckle tracking echocardiography in patients with hypertension. J. Cardiovasc Ultrasound. 2012;20(2):90–96. DOI: 10.4250/jcu.2012.20.2.90.

5. Zota I.M., Stătescu C., Sascău R.A., Roca M., Anghel L., Maștaleru A. et al. Acute and Long-Term Consequences of COVID-19 on Arterial Stiffness-A Narrative Review. Life (Basel). 2022;12(6):781. DOI: 10.3390/life12060781.

6. Ayres J.S. A metabolic handbook for the COVID-19 pandemic. Nat. Metab. 2020;2(7):572–585. DOI: 10.1038/s42255-020-0237-2.

7. Richardson S., Hirsch J.S., Narasimhan M., Crawford J.M., McGinn T., Davidson K.W. et al. Presenting characteristics, comorbidities, and outcomes among 5700 patients hospitalized with COVID-19 in the New York City Area. JAMA. 2020;323(20):2052–2059. DOI: 10.1001/jama.2020.6775.

8. Liberati A., Altman D.G., Tetzlaff J., Mulrow C., Gøtzsche P.C., Ioannidis J.P.A. et al. The PRISMA Statement for Reporting Systematic Reviews and Meta-Analyses of Studies That Evaluate Healthcare Interventions: Explanation and Elaboration. BMJ. 2009;339:b2700. DOI: 10.1136/bmj.b2700.

9. Ikonomidis I., Katsanos S., Triantafyllidi H., Parissis J., Tzortzis S., Pavlidis G. et al. Pulse wave velocity to global longitudinal strain ratio in hypertension. Eur. J. Clin. Invest. 2019;49(2):e13049. DOI: 10.1111/eci.13049.

10. Alcidi G.M., Esposito R., Evola V., Santoro C., Lembo M., Sorrentino R., Lo Iudice F. et al. Normal reference values of multilayer longitudinal strain according to age decades in a healthy population: A single-centre experience. Eur. Heart J. Cardiovasc. Imaging. 2018;19(12):1390–1396. DOI: 10.1093/ehjci/jex306.

11. Lang R.M., Badano L.P., Mor-Avi V., Afilalo J., Armstrong A., Ernande L. et al. Recommendations for cardiac chamber quantification by echocardiography in adults: an update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. J. Am. Soc. Echocardiogr. 2015;28(1):1–39.e14. DOI: 10.1016/j.echo.2014.10.003.

12. Широков Н.Е., Ярославская Е.И., Криночкин Д.В., Мусихина Н.А., Петелина Т.И., Осокина Н.А. Связь вариантов скрытой контрактильной дисфункции левого желудочка и признаков иммунного воспаления у пациентов, перенесших COVID-19-пневмонию. Кардиоваскулярная терапия и профилактика. 2023;22(3):3434.

13. Ikonomidis I., Lambadiari V., Mitrakou A., Kountouri A., Katogiannis K., Thymis J. et al. Myocardial work and vascular dysfunction are partially improved at 12 months after COVID-19 infection. Eur. J. Heart Fail. 2022;24(4):727–729. DOI: 10.1002/ejhf.2451.


Review

For citations:


Yaroslavskaya E.I., Shirokov N.E., Krinochkin D.V., Migacheva A.V., Korovina I.O., Osokina N.A., Sapozhnikova A.D., Petelina T.I. Changes in the cardiovascular profile in patients 3 and 12 months after COVID-19 pneumonia: parameters of arterial stiffness, global longitudinal strain, and diastolic function of the left ventricle. Bulletin of Siberian Medicine. 2024;23(1):94-104. https://doi.org/10.20538/1682-0363-2024-1-94-104

Views: 344


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1682-0363 (Print)
ISSN 1819-3684 (Online)